A334388 Decimal expansion of Sum_{k>=1} A007953(k) / (k*(k+1)) where A007953(k) is the sum of digits of the integer k.
2, 5, 5, 8, 4, 2, 7, 8, 8, 1, 1, 0, 4, 4, 9, 5, 2, 0, 4, 4, 6, 4, 4, 3, 4, 9, 4, 9, 6, 4, 9, 2, 9, 3, 5, 6, 4, 0, 0, 1, 2, 2, 3, 8, 7, 6, 2, 5, 4, 1, 9, 2, 1, 9, 5, 5, 9, 2, 5, 8, 6, 5, 5, 6, 6, 3, 0, 6, 3, 6, 2, 3, 2, 9, 7, 4, 8, 3, 6, 0, 8, 9, 1, 5, 1, 1, 0, 8, 0, 0, 5, 6, 5, 5, 1, 0, 9, 2, 2, 0
Offset: 1
Examples
2.5584278811044952044644349496492935640012238762541921955925865566
Links
- Jean-Paul Allouche, Somme de séries de nombres réels, Image des Mathématiques, CNRS, 2010 (in French).
- Olivier Bordellès, Lixia Dai, Randell Heyman, Hao Pan, and Igor E. Shparlinski, On a sum involving the Euler function, arXiv:1808.00188 [math.NT]
- J. O. Shallit, Solutions of Advanced Problems, 6450, The American Mathematical Monthly, Vol. 92, No. 7, Aug.-Sep., 1985, pp. 513-514; DOI: 10.2307/2322523.
- Index entries for transcendental numbers
Programs
-
Maple
evalf(10*log(10)/9,90);
-
Mathematica
RealDigits[10*Log[10]/9, 10, 100][[1]] (* Amiram Eldar, Sep 08 2020 *)
-
PARI
10*log(10)/9 \\ Charles R Greathouse IV, Mar 22 2022
Formula
Equals 1/(1*2) + 2/(2*3) + 3/(3*4) + 4/(4*5) + ... + 1/(10*11) + 2/(11*12) + ...
Equals (10/9) * log(10).
Extensions
a(90) corrected by Georg Fischer, Jul 12 2021
Comments