This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334394 #26 Apr 28 2020 15:39:56 %S A334394 1,1,7,1,163,52,1,8983,4499,341,1,966751,660746,98256,2246,1, %T A334394 179781181,155729277,35677082,2045282,15177,1,53090086057,55690144728, %U A334394 17446464519,1754605504,42658239,104952,1,23402291822743,28825420903351,11518335730323,1717307782339,84058424389,905365701,739153,1 %N A334394 Triangle read by rows: T(n,k) is the number of ordered triples of n-permutations with exactly k common descents, n>=0, 0<=k<=max(0,n-1). %C A334394 An ordered triple of n-permutations ( (a_1,a_2,...,a_n),(b_1,b_2,...,b_n),(c_1,c_2,...,c_n) ) has a common descent at position i, 1<=i<=n-1, if a_i > a_i+1, b_i > b_i+1 and c_i > c_i+1. %D A334394 R. P. Stanley, Enumerative Combinatorics, Volume I, Second Edition, example 3.18.3e, page 366. %H A334394 Alois P. Heinz, <a href="/A334394/b334394.txt">Rows n = 0..30, flattened</a> %H A334394 P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; page 209. %F A334394 Sum_{n>=0} Sum_{k>=0} T(n,k)*y^k*x^n/n!^3 = (y-1)/(y-f(x*(y-1))) where f(z) = Sum_{n>=0} z^n/n!^3. %e A334394 Triangle begins: %e A334394 1; %e A334394 1; %e A334394 7, 1; %e A334394 163, 52, 1; %e A334394 8983, 4499, 341, 1; %e A334394 966751, 660746, 98256, 2246, 1; %e A334394 ... %p A334394 T:= (n, k)-> n!^3*coeff(series(coeff(series((y-1)/(y-add((x* %p A334394 (y-1))^j/j!^3, j=0..n)), y, k+1), y, k), x, n+1), x, n): %p A334394 seq(seq(T(n,k), k=0..max(0, n-1)), n=0..10); # _Alois P. Heinz_, Apr 28 2020 %t A334394 nn = 6; e3[x_] := Sum[x^n/n!^3, {n, 0, nn}];Drop[Map[Select[#, # > 0 &] &, %t A334394 Table[n!^3, {n, 0, nn}] CoefficientList[Series[(y - 1)/(y - e3[x (y - 1)]), {x, 0, nn}], {x, y}]], 1] // Grid %Y A334394 Cf. A192721, A008292, A212856 (column k=0), A000442 (row sums). %K A334394 nonn,tabf %O A334394 0,3 %A A334394 _Geoffrey Critzer_, Apr 26 2020