This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334411 #14 Aug 31 2024 04:42:03 %S A334411 2,0,0,8,1,5,6,0,5,4,9,9,2,7,4,5,3,1,5,1,4,9,0,3,9,4,8,2,3,2,3,4,1,3, %T A334411 6,9,2,1,1,9,5,3,2,1,5,9,8,3,0,9,5,0,9,7,8,7,7,0,7,4,2,9,9,6,1,7,4,2, %U A334411 2,7,2,5,1,1,3,8,0,5,5,2,0,9,3,4,0,6,0,5,0,1,0,2,0,2,6,9,6,3,0,3,2,1,8,7,9 %N A334411 Decimal expansion of Product_{k>=1} (1 + 1/k^8). %C A334411 From _Vaclav Kotesovec_, Aug 30 2024: (Start) %C A334411 For m>0, Product_{k>=1} (1 + m/k^8) = (cosh(Pi*sqrt(2 - sqrt(2))*m^(1/8)) - cos(Pi*sqrt(2 + sqrt(2))*m^(1/8))) * (cosh(Pi*sqrt(2 + sqrt(2))*m^(1/8)) - cos(Pi*sqrt(2 - sqrt(2))*m^(1/8)))/(4*sqrt(m)*Pi^4). %C A334411 If m tends to infinity, Product_{k>=1} (1 + m/k^8) ~ exp(Pi*sqrt(2*(2 + sqrt(2)))*m^(1/8)) / (16*Pi^4*sqrt(m)). %C A334411 In general, if m tends to infinity and v > 2, Product_{k>=1} (1 + m/k^v) ~ exp(Pi*m^(1/v)/sin(Pi/v)) / ((2*Pi)^(v/2)*sqrt(m)). (End) %F A334411 Equals exp(Sum_{j>=1} (-(-1)^j*Zeta(8*j)/j)). %F A334411 Equals (cos(sqrt(4 - 2*sqrt(2))*Pi) + cos(sqrt(4 + 2*sqrt(2))*Pi) + cosh(sqrt(4 - 2*sqrt(2))*Pi) + cosh(sqrt(4 + 2*sqrt(2))*Pi) - 2*cos(sqrt(2 - sqrt(2))*Pi) * cosh(sqrt(2 - sqrt(2))*Pi) - 2*cos(sqrt(2 + sqrt(2))*Pi) * cosh(sqrt(2 + sqrt(2))*Pi)) / (8*Pi^4). %e A334411 2.00815605499274531514903948232341369211953215983095097877074299617422... %p A334411 evalf(Product(1 + 1/j^8, j = 1..infinity), 120); %t A334411 RealDigits[Chop[N[Product[(1 + 1/n^8), {n, 1, Infinity}], 120]]][[1]] %o A334411 (PARI) default(realprecision, 120); exp(sumalt(j=1, -(-1)^j*zeta(8*j)/j)) %Y A334411 Cf. A156648, A073017, A258870, A307216, A258871. %Y A334411 Cf. A109219, A175615, A175616, A175617, A175619. %K A334411 nonn,cons %O A334411 1,1 %A A334411 _Vaclav Kotesovec_, Apr 27 2020