cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A334418 Primitive abundant numbers (A091191) with a record gap to the next primitive abundant number.

Original entry on oeis.org

12, 20, 30, 42, 114, 138, 678, 1758, 8296, 10052, 12966, 13076, 14862, 19635, 38950, 50802, 77118, 94108, 218334, 439134, 478194, 746202, 1128174, 2028198, 6934398, 7750146, 8330924, 10030804, 33467106, 36205482, 60716562, 65183838, 69334698, 81757564, 84010614
Offset: 1

Views

Author

Amiram Eldar, Apr 29 2020

Keywords

Comments

The record gap values are 6, 10, 12, 14, 24, 36, 70, 84, ... (see the link for more values).

Examples

			The first 6 terms of A091191 are 12, 18, 20, 30, 42 and 56. The differences between these terms are 6, 2, 10, 12 and 14. The record gaps are 6, 10, 12 and 14, which occur after the terms 12, 20, 30 and 42.
		

Crossrefs

Similar sequences: A306747, A306748, A306953.

Programs

  • Mathematica
    primAbQ[n_] := DivisorSigma[1, n] > 2 n && AllTrue[Most @ Rest @ Divisors[n], DivisorSigma[1, #] <= 2*# &]; seq = {}; m = 12; dm = 0; Do[If[primAbQ[n], d = n - m; If[d > dm, dm = d; AppendTo[seq, m]]; m = n], {n, 13, 10^6}]; seq

A362053 Primitive abundant numbers k (A071395) whose abundancy index sigma(k)/k has a record low value.

Original entry on oeis.org

20, 70, 88, 104, 464, 650, 1888, 1952, 4030, 5830, 8925, 17816, 32128, 77744, 91388, 128768, 130304, 442365, 521728, 522752, 1848964, 8353792, 8378368, 8382464, 35021696, 45335936, 120888092, 134193152, 775397948, 1845991216, 2146926592, 2146992128, 3381872252
Offset: 1

Views

Author

Amiram Eldar, Apr 06 2023

Keywords

Comments

The abundancy index of an integer k is sigma(k)/k, where sigma is the sum-of-divisors function (A000203).
Terms k of A071395 such that sigma(k)/k < sigma(m)/m for all smaller terms m < k of A071395.

Examples

			The abundancy indices of the first terms are 21/10 > 72/35 > 45/22 > 105/52 > 465/232 > 651/325 > 945/472 > ... > 2.
		

Crossrefs

Other sequences related to records in A071395: A083873, A334419.

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p^(e + 1) - p^e); f2[p_, e_] := (p^(e + 1) - p)/(p^(e + 1) - 1);
    (* Returns the abundancy index of n if n is primitive abundant, and 0 otherwise: *)
    abIndex[n_] := If[(r = Times @@ f1 @@@ (f = FactorInteger[n])) > 2 && r * Max @@ f2 @@@ f < 2, r, 0]; abIndex[1] = 0;
    seq[kmax_] := Module[{s = {}, ab, abm = 3}, Do[If[0 < (ab = abIndex[k]) < abm, abm = ab; AppendTo[s, k]], {k, 1,  kmax}]; s]; seq[10^6]
  • PARI
    abindex(n) = {my(f = factor(n), r, p, e); r = sigma(f, -1); if(r <= 2, return(0)); if(vecmax(vector(#f~, i, p = f[i, 1]; e = f[i, 2]; (p^(e + 1) - p)/(p^(e + 1) - 1))) * r < 2, r, 0);} \\ Returns the abundancy index of n if n is primitive abundant, and 0 otherwise.
    lista(kmax) = {my(ab, abm = 3); for(k = 1, kmax, ab = abindex(k); if(ab > 0 && ab < abm, abm = ab; print1(k, ", "))); }

A364975 Admirable numbers (A111592) with a record gap to the next admirable number.

Original entry on oeis.org

12, 30, 42, 88, 120, 140, 186, 534, 678, 6774, 7962, 77118, 94108, 152826, 478194, 662154, 935564, 1128174, 2028198, 6934398, 7750146, 8330924, 9984738, 10030804, 22956114, 62062566, 151040622, 284791602, 732988732, 804394974, 1151476732, 9040886574, 31302713634
Offset: 1

Views

Author

Amiram Eldar, Aug 15 2023

Keywords

Comments

The corresponding record gaps are 8, 10, 12, 14, 18, 34, 36, 48, 84, 132, 204, 216, 254, 312, 348, 360, 392, 468, 516, 528, 552, 598, 624, 638, 828, 852, 936, 1056, 1082, 1128, 1454, 1692, 1752, ... .

Examples

			The first 5 admirable numbers are 12, 20, 24, 30 and 40. The differences between these terms are 8, 4, 6 and 10. The record gaps, 8 and 10, occur after the terms 12 and 30, which are the first two terms of this sequence.
		

Crossrefs

Similar sequences: A306953, A330870, A334418, A334419, A334883, A363296.

Programs

  • Mathematica
    admQ[n_] := (ab = DivisorSigma[1, n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2];
    seq[kmax_] := Module[{s = {}, m = 12, dm = 0}, Do[If[admQ[k], d = k - m; If[d > dm, dm = d; AppendTo[s, m]]; m = k], {k, m + 1, kmax}]; s]; seq[10^6]
  • PARI
    isadm(n) = {my(ab=sigma(n)-2*n); ab>0 && ab%2 == 0 && ab/2 < n && n%(ab/2) == 0; }
    lista(kmax) = {my(m = 12, dm = 0); for(k = m+1, kmax, if(isadm(k), d = k - m; if(d > dm, dm = d; print1(m, ", ")); m = k));}
Showing 1-3 of 3 results.