This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334428 #13 Jul 02 2020 04:51:54 %S A334428 0,1,1,2,1,2,3,1,2,4,1,2,3,4,5,1,2,3,4,5,6,1,2,4,7,1,2,3,4,5,6,7,8,1, %T A334428 2,3,4,5,6,7,8,9,1,2,4,5,8,10,1,2,3,4,5,6,7,8,9,10,11,1,2,3,4,6,7,8,9, %U A334428 11,12,1,2,4,5,7,8,10,11,13,1,2,3,4,5,6,7,8,9,10,11,12,13,14,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 %N A334428 Irregular triangle read by rows: row n gives the members of the smallest nonnegative reduced residue system in the modified congruence modulo 2*n - 1 by Brändli and Beyne, called mod*(2*n - 1). %C A334428 The length of row n is A072451(n) = A055034(2*n-1), for n >= 1. %C A334428 See the Brändli-Beyne link, and A333856 for the definition and some examples of this mod* system. %C A334428 This reduced residue system mod* (2*n - 1) will be called RRS*(2*n - 1). %C A334428 Compare this table with the one for the reduced residue system modulo 2*n - 1 (called RRS(2*n - 1) = A038566(2*n - 1), but with A038566(1) = 0). For n >= 2 RRS*(2*n-1) consists of the first half of the entries of RRS(2*n - 1). %C A334428 The modular arithmetic is multiplicative but not additive for mod*. See A333856 for examples. %H A334428 Gerold Brändli and Tim Beyne, <a href="https://arxiv.org/abs/1504.02757">Modified Congruence Modulo n with Half the Amount of Residues</a>, arXiv:1504.02757 [math.NT], 2016. %F A334428 T(1, 1) = 0, T(n, k) = A038566(2*n - 1, k) for k = 1, 2, ..., A072451(n), for n >= 2. %e A334428 The irregular triangle T(n, k) begins (b = 2*n - 1): %e A334428 n b \k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ... %e A334428 --------------------------------------------------------------- %e A334428 1 1: 0 %e A334428 2 3: 1 %e A334428 3 5: 1 2 %e A334428 4 7: 1 2 3 %e A334428 5 9: 1 2 4 %e A334428 6 11: 1 2 3 4 5 %e A334428 7 13: 1 2 3 4 5 6 %e A334428 8 15: 1 2 4 7 %e A334428 9 17: 1 2 3 4 5 6 7 8 %e A334428 10 19: 1 2 3 4 5 6 7 8 9 %e A334428 11 21: 1 2 4 5 8 10 %e A334428 12 23: 1 2 3 4 5 6 7 8 9 10 11 %e A334428 13 25: 1 2 3 4 6 7 8 9 11 12 %e A334428 14 27: 1 2 4 5 7 8 10 11 13 %e A334428 15 29: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 %e A334428 16 31: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 %e A334428 17 33: 1 2 4 5 7 8 10 13 14 16 %e A334428 18 35: 1 2 3 4 6 8 9 11 12 13 16 17 %e A334428 19 37: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 %e A334428 20 39: 1 2 4 5 7 8 10 11 14 16 17 19 %e A334428 ... %e A334428 ----------------------------------------------------------- %e A334428 For n = 5 (b = 9) see the example in A333856. %t A334428 Array[Function[{m, b}, Select[Range[1, m], GCD[#, b] == 1 &] /. {} -> {0}] @@ {# - 1, 2 # - 1} &, 16] // Flatten (* _Michael De Vlieger_, Jun 27 2020 *) %Y A334428 Cf. A055034, A072451, A038566, A333856. %K A334428 nonn,tabf,easy %O A334428 1,4 %A A334428 _Wolfdieter Lang_, Jun 27 2020