A334429 Irregular triangle read by rows: T(n, k) gives the coefficients of x^k of the minimal polynomials of the algebraic number over the rationals rho(n)^2, with rho(n) = 2*cos(Pi/n), for n >= 1.
-4, 1, 0, 1, -1, 1, -2, 1, 1, -3, 1, -3, 1, -1, 6, -5, 1, 2, -4, 1, -1, 9, -6, 1, 5, -5, 1, -1, 15, -35, 28, -9, 1, 1, -4, 1, 1, -21, 70, -84, 45, -11, 1, -7, 14, -7, 1, 1, -24, 26, -9, 1, 2, -16, 20, -8, 1, 1, -36, 210, -462, 495, -286, 91, -15, 1, -3, 9, -6, 1, -1, 45, -330, 924, -1287, 1001, -455, 120, -17, 1, 1, -12, 19, -8, 1
Offset: 1
Examples
The irregular triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 ... 1: -4 1 2: 0 1 3: -1 1 4; -2 1 5: 1 -3 1 6: -3 1 7: -1 6 -5 1 8: 2 -4 1 9: -1 9 -6 1 10: 5 -5 1 11: -1 15 -35 28 -9 1 12: 1 -4 1 13: 1 -21 70 -84 45 -11 1 14: -7 14 -7 1 15: 1 -24 26 -9 1 16: 2 -16 20 -8 1 17: 1 -36 210 -462 495 -286 91 -15 1 18: -3 9 -6 1 19: -1 45 -330 924 -1287 1001 -455 120 -17 1 20: 1 -12 19 -8 ...
Links
- Wolfdieter Lang, The field Q(2cos(Pi/n)), its Galois group and length ratios in the regular n-gon, arXiv:1210.1018v2 [math.GR], 2012.
- Jesús Salas and Alan D. Sokal, Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models I. General Theory and Square-Lattice Chromatic Polynomial, arXiv:cond-mat/0004330v2 [cond-mat.stat-mech], 2001, and J. Stat. Phys. 104, Nos. 3/4, (2001) 609-699, Table 1 on p. 620.
Comments