A337712 Irregular triangle read by rows: row n gives the complete system of cycles of the doubling sequences modulo N = 2*n+1, for n >= 0.
1, 2, 1, 2, 4, 3, 1, 2, 4, 3, 6, 5, 1, 2, 4, 8, 7, 5, 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, 2, 4, 8, 7, 14, 13, 11, 1, 2, 4, 8, 16, 15, 13, 9, 3, 6, 12, 7, 14, 11, 5, 10, 1, 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10
Offset: 0
Examples
The irregular triangle T(n, k) begins (cycles are separated by a vertical bar) n, N \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ... 0, 1: 1 1, 3: 1 2 2, 5: 1 2 4 3 3, 7: 1 2 4|3 6 5 4, 9: 1 2 4 8 7 5 5, 11: 1 2 4 8 5 10 9 7 3 6 6, 13: 1 2 4 8 3 6 12 11 9 5 10 7 7, 15: 1 2 4 8| 7 14 13 11 8, 17: 1 2 4 8 16 15 13 9| 7 14 11 5 10 3 6 12 9, 19: 1 2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 10, 21: 1 2 4 8 16 11| 5 10 20 19 17 13 11, 23: 1 2 4 8 16 9 18 13 3 6 12| 5 10 20 17 11 22 21 19 15 7 14 12, 25: 1 2 4 8 16 7 14 3 6 12 24 23 21 17 9 18 11 22 19 13 13, 27: 1 2 4 8 16 5 10 20 13 26 25 23 19 11 22 17 7 14 ... n = 14, N = 29: 1 2 4 8 16 3 6 12 24 19 9 18 7 14 28 27 25 21 13 26 23 17 5 10 20 11 22 15, n = 15, N = 31: 1 2 4 8 16|3 6 12 24 17|5 10 20 9 18|7 14 28 25 19|11 22 13 26 21|15 30 29 27 23.
References
- Robert L. Devaney, A First Course in Chaotic Dynamical Systems, Addison-Wesley., 1992. pp. 24-25, 27, 125, 132, 171, 289. Second edition 2020.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11921 (rows 0 <= n <= 120, flattened)
Crossrefs
Programs
-
Mathematica
Array[Block[{a = {}, k = 2, n = 2 # + 1, m}, m = EulerPhi[n]; While[Length@ Flatten@ a < m, AppendTo[a, Most@ NestWhileList[Mod[2 #, n] &, If[Length@ a == 0, 1, k], UnsameQ, All]]; Set[k, SelectFirst[Complement[Range[n], Union@ Flatten@ a], GCD[#, n] == 1 &] ]]; a] &, 9] // Flatten (* Michael De Vlieger, Nov 06 2020 *)
Comments