cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334432 Irregular triangle read by rows: T(m,k) gives the coefficients of x^k of the minimal polynomials of (2*cos(Pi/(2*m+1)))^2 = rho(2*n+1)^2, for m >= 0.

This page as a plain text file.
%I A334432 #11 Jun 19 2020 11:25:08
%S A334432 -4,1,-1,1,1,-3,1,-1,6,-5,1,-1,9,-6,1,-1,15,-35,28,-9,1,1,-21,70,-84,
%T A334432 45,-11,1,1,-24,26,-9,1,1,-36,210,-462,495,-286,91,-15,1,-1,45,-330,
%U A334432 924,-1287,1001,-455,120,-17,1,1,-48,148,-146,64,-13,1
%N A334432 Irregular triangle read by rows: T(m,k) gives the coefficients of x^k of the minimal polynomials of (2*cos(Pi/(2*m+1)))^2 = rho(2*n+1)^2, for  m >= 0.
%C A334432 The length of row m is delta(2*m+1) + 1 = A055034(2*m+1) + 1.
%C A334432 For details see A334429, where the formula for the minimal polynomial MPc2(m, x) of 2*cos(Pi/(2*m+1))^2 = rho(2*m+1)^2, for m >= 0, is given.
%C A334432 The companion triangle for even n is A334431.
%F A334432 T(m, k) = [x^k] MPc2odd(m, x), with  MPc2odd(m, x) = Product_{j=1..delta(2*m+1)} (x - (2 + R(rpnodd(2*m+1)_j, rho(2*m+1)))) (evaluated using C(2*m+1, rho(2*m+1)) = 0), for m >= 1, and  MPc2odd(0, x) = -4 + x. Here R(n, x) is the monic Chebyshev R polynomial with coefficients given in A127672. C(n, x) is the minimal polynomial of rho(n) = 2*cos(Pi/n) given in A187360, and rpnodd(m) is the list of positive odd numbers coprime to 2*m + 1 and <= 2*m - 1.
%e A334432 The irregular triangle T(m,k) begins:
%e A334432 m,   n \ k  0    1    2     3     4     5     6   7   8  9 ...
%e A334432 --------------------------------------------------------------
%e A334432 0,   1     -4    1
%e A334432 1,   3:    -1    1
%e A334432 2,   5:     1   -3    1
%e A334432 3,   7:    -1    6   -5     1
%e A334432 4,   9:    -1    9   -6     1
%e A334432 5,  11:    -1   15  -35    28    -9     1
%e A334432 6,  13:     1  -21   70   -84    45   -11     1
%e A334432 7,  15:     1  -24   26    -9     1
%e A334432 8,  17:     1  -36  210  -462   495  -286    91 -15   1
%e A334432 9,  19:    -1   45 -330   924 -1287  1001  -455 120 -17  1
%e A334432 10, 21:     1  -48  148  -146    64   -13     1
%e A334432 ...
%Y A334432 Cf. A055034, A334429, A334431.
%K A334432 sign,tabf,easy
%O A334432 0,1
%A A334432 _Wolfdieter Lang_, Jun 15 2020