This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334433 #21 May 28 2020 05:03:13 %S A334433 1,2,3,4,5,6,8,7,9,10,12,16,11,15,14,18,20,24,32,13,25,21,22,27,30,28, %T A334433 36,40,48,64,17,35,33,26,45,50,42,44,54,60,56,72,80,96,128,19,49,55, %U A334433 39,34,75,63,70,66,52,81,90,100,84,88,108,120,112,144,160,192,256 %N A334433 Heinz numbers of all integer partitions sorted first by sum, then by length, and finally lexicographically. %C A334433 First differs from A334435 at a(75) = 99, A334435(75) = 98. %C A334433 A permutation of the positive integers. %C A334433 This is the Abramowitz-Stegun ordering of integer partitions when the parts are read in the usual (weakly decreasing) order. The case of reversed (weakly increasing) partitions is A185974. %C A334433 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A334433 As a triangle with row lengths A000041, the sequence starts {{1},{2},{3,4},{5,6,8},...}, so offset is 0. %H A334433 OEIS Wiki, <a href="http://oeis.org/wiki/Orderings of partitions">Orderings of partitions</a> %H A334433 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %F A334433 A001222(a(n)) = A036043(n). %e A334433 The sequence of terms together with their prime indices begins: %e A334433 1: {} 32: {1,1,1,1,1} 42: {1,2,4} %e A334433 2: {1} 13: {6} 44: {1,1,5} %e A334433 3: {2} 25: {3,3} 54: {1,2,2,2} %e A334433 4: {1,1} 21: {2,4} 60: {1,1,2,3} %e A334433 5: {3} 22: {1,5} 56: {1,1,1,4} %e A334433 6: {1,2} 27: {2,2,2} 72: {1,1,1,2,2} %e A334433 8: {1,1,1} 30: {1,2,3} 80: {1,1,1,1,3} %e A334433 7: {4} 28: {1,1,4} 96: {1,1,1,1,1,2} %e A334433 9: {2,2} 36: {1,1,2,2} 128: {1,1,1,1,1,1,1} %e A334433 10: {1,3} 40: {1,1,1,3} 19: {8} %e A334433 12: {1,1,2} 48: {1,1,1,1,2} 49: {4,4} %e A334433 16: {1,1,1,1} 64: {1,1,1,1,1,1} 55: {3,5} %e A334433 11: {5} 17: {7} 39: {2,6} %e A334433 15: {2,3} 35: {3,4} 34: {1,7} %e A334433 14: {1,4} 33: {2,5} 75: {2,3,3} %e A334433 18: {1,2,2} 26: {1,6} 63: {2,2,4} %e A334433 20: {1,1,3} 45: {2,2,3} 70: {1,3,4} %e A334433 24: {1,1,1,2} 50: {1,3,3} 66: {1,2,5} %e A334433 Triangle begins: %e A334433 1 %e A334433 2 %e A334433 3 4 %e A334433 5 6 8 %e A334433 7 9 10 12 16 %e A334433 11 15 14 18 20 24 32 %e A334433 13 25 21 22 27 30 28 36 40 48 64 %e A334433 17 35 33 26 45 50 42 44 54 60 56 72 80 96 128 %e A334433 This corresponds to the tetrangle: %e A334433 0 %e A334433 (1) %e A334433 (2)(11) %e A334433 (3)(21)(111) %e A334433 (4)(22)(31)(211)(1111) %e A334433 (5)(32)(41)(221)(311)(2111)(11111) %t A334433 Join@@Table[Times@@Prime/@#&/@Sort[IntegerPartitions[n]],{n,0,8}] %Y A334433 Row lengths are A000041. %Y A334433 Compositions under the same order are A124734 (triangle). %Y A334433 The version for reversed (weakly increasing) partitions is A185974. %Y A334433 The constructive version is A334301. %Y A334433 Ignoring length gives A334434, or A334437 for reversed partitions. %Y A334433 The dual version (sum/length/revlex) is A334438. %Y A334433 Lexicographically ordered reversed partitions are A026791. %Y A334433 Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036. %Y A334433 Partitions in increasing-length colexicographic order (sum/length/colex) are A036037. %Y A334433 Graded reverse-lexicographically ordered partitions are A080577. %Y A334433 Sorting reversed partitions by Heinz number gives A112798. %Y A334433 Graded lexicographically ordered partitions are A193073. %Y A334433 Graded Heinz numbers are A215366. %Y A334433 Sorting partitions by Heinz number gives A296150. %Y A334433 Partitions in increasing-length reverse-lexicographic order (sum/length/revlex) are A334439 (not A036037). %Y A334433 Cf. A026791, A036043, A048793, A056239, A129129, A211992, A228351, A228531, A334302, A334435, A334436. %K A334433 nonn,tabf %O A334433 0,2 %A A334433 _Gus Wiseman_, Apr 30 2020