This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334435 #20 Sep 22 2023 07:53:08 %S A334435 1,2,3,4,5,6,8,7,9,10,12,16,11,15,14,18,20,24,32,13,25,21,22,27,30,28, %T A334435 36,40,48,64,17,35,33,26,45,50,42,44,54,60,56,72,80,96,128,19,49,55, %U A334435 39,34,75,63,70,66,52,81,90,100,84,88,108,120,112,144,160,192,256 %N A334435 Heinz numbers of all reversed integer partitions sorted first by sum, then by length, and finally reverse-lexicographically. %C A334435 First differs from A334433 at a(75) = 99, A334433(75) = 98. %C A334435 First differs from A334436 at a(22) = 22, A334436(22) = 27. %C A334435 A permutation of the positive integers. %C A334435 Reversed integer partitions are finite weakly increasing sequences of positive integers. %C A334435 This is the Abramowitz-Stegun ordering of reversed partitions (A185974) except that the finer order is reverse-lexicographic instead of lexicographic. The version for non-reversed partitions is A334438. %C A334435 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A334435 As a triangle with row lengths A000041, the sequence starts {{1},{2},{3,4},{5,6,8},...}, so offset is 0. %H A334435 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %F A334435 A001222(a(n)) = A036043(n). %e A334435 The sequence of terms together with their prime indices begins: %e A334435 1: {} 32: {1,1,1,1,1} 42: {1,2,4} %e A334435 2: {1} 13: {6} 44: {1,1,5} %e A334435 3: {2} 25: {3,3} 54: {1,2,2,2} %e A334435 4: {1,1} 21: {2,4} 60: {1,1,2,3} %e A334435 5: {3} 22: {1,5} 56: {1,1,1,4} %e A334435 6: {1,2} 27: {2,2,2} 72: {1,1,1,2,2} %e A334435 8: {1,1,1} 30: {1,2,3} 80: {1,1,1,1,3} %e A334435 7: {4} 28: {1,1,4} 96: {1,1,1,1,1,2} %e A334435 9: {2,2} 36: {1,1,2,2} 128: {1,1,1,1,1,1,1} %e A334435 10: {1,3} 40: {1,1,1,3} 19: {8} %e A334435 12: {1,1,2} 48: {1,1,1,1,2} 49: {4,4} %e A334435 16: {1,1,1,1} 64: {1,1,1,1,1,1} 55: {3,5} %e A334435 11: {5} 17: {7} 39: {2,6} %e A334435 15: {2,3} 35: {3,4} 34: {1,7} %e A334435 14: {1,4} 33: {2,5} 75: {2,3,3} %e A334435 18: {1,2,2} 26: {1,6} 63: {2,2,4} %e A334435 20: {1,1,3} 45: {2,2,3} 70: {1,3,4} %e A334435 24: {1,1,1,2} 50: {1,3,3} 66: {1,2,5} %e A334435 Triangle begins: %e A334435 1 %e A334435 2 %e A334435 3 4 %e A334435 5 6 8 %e A334435 7 9 10 12 16 %e A334435 11 15 14 18 20 24 32 %e A334435 13 25 21 22 27 30 28 36 40 48 64 %e A334435 17 35 33 26 45 50 42 44 54 60 56 72 80 96 128 %e A334435 This corresponds to the following tetrangle: %e A334435 0 %e A334435 (1) %e A334435 (2)(11) %e A334435 (3)(12)(111) %e A334435 (4)(22)(13)(112)(1111) %e A334435 (5)(23)(14)(122)(113)(1112)(11111) %t A334435 revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]<Length[c],OrderedQ[{c,f}]]; %t A334435 Table[Times@@Prime/@#&/@Sort[Sort/@IntegerPartitions[n],revlensort],{n,0,8}] %Y A334435 Row lengths are A000041. %Y A334435 The dual version (sum/length/lex) is A185974. %Y A334435 Compositions under the same order are A296774 (triangle). %Y A334435 The constructive version is A334302. %Y A334435 Ignoring length gives A334436. %Y A334435 The version for non-reversed partitions is A334438. %Y A334435 Partitions in this order (sum/length/revlex) are A334439. %Y A334435 Lexicographically ordered reversed partitions are A026791. %Y A334435 Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036. %Y A334435 Partitions in increasing-length colex order (sum/length/colex) are A036037. %Y A334435 Reverse-lexicographically ordered partitions are A080577. %Y A334435 Sorting reversed partitions by Heinz number gives A112798. %Y A334435 Graded lexicographically ordered partitions are A193073. %Y A334435 Partitions in colexicographic (sum/colex) order are A211992. %Y A334435 Graded Heinz numbers are given by A215366. %Y A334435 Sorting partitions by Heinz number gives A296150. %Y A334435 Cf. A056239, A124734, A129129, A228100, A228531, A333219, A333220, A334301, A334433, A334434, A334437. %K A334435 nonn,tabf %O A334435 0,2 %A A334435 _Gus Wiseman_, May 02 2020