This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334436 #14 Sep 22 2023 08:43:40 %S A334436 1,2,3,4,5,6,8,7,9,10,12,16,11,15,14,18,20,24,32,13,25,21,27,22,30,28, %T A334436 36,40,48,64,17,35,33,45,26,50,42,54,44,60,56,72,80,96,128,19,49,55, %U A334436 39,75,63,81,34,70,66,90,52,100,84,108,88,120,112,144,160,192,256 %N A334436 Heinz numbers of all reversed integer partitions sorted first by sum and then reverse-lexicographically. %C A334436 First differs from A334435 at a(22) = 27, A334435(22) = 22. %C A334436 A permutation of the positive integers. %C A334436 Reversed integer partitions are finite weakly increasing sequences of positive integers. For non-reversed partitions, see A129129 and A228531. %C A334436 This is the so-called "Mathematica" order (A080577). %C A334436 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %H A334436 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %F A334436 A001222(a(n)) = A333486(n). %e A334436 The sequence of terms together with their prime indices begins: %e A334436 1: {} 32: {1,1,1,1,1} 42: {1,2,4} %e A334436 2: {1} 13: {6} 54: {1,2,2,2} %e A334436 3: {2} 25: {3,3} 44: {1,1,5} %e A334436 4: {1,1} 21: {2,4} 60: {1,1,2,3} %e A334436 5: {3} 27: {2,2,2} 56: {1,1,1,4} %e A334436 6: {1,2} 22: {1,5} 72: {1,1,1,2,2} %e A334436 8: {1,1,1} 30: {1,2,3} 80: {1,1,1,1,3} %e A334436 7: {4} 28: {1,1,4} 96: {1,1,1,1,1,2} %e A334436 9: {2,2} 36: {1,1,2,2} 128: {1,1,1,1,1,1,1} %e A334436 10: {1,3} 40: {1,1,1,3} 19: {8} %e A334436 12: {1,1,2} 48: {1,1,1,1,2} 49: {4,4} %e A334436 16: {1,1,1,1} 64: {1,1,1,1,1,1} 55: {3,5} %e A334436 11: {5} 17: {7} 39: {2,6} %e A334436 15: {2,3} 35: {3,4} 75: {2,3,3} %e A334436 14: {1,4} 33: {2,5} 63: {2,2,4} %e A334436 18: {1,2,2} 45: {2,2,3} 81: {2,2,2,2} %e A334436 20: {1,1,3} 26: {1,6} 34: {1,7} %e A334436 24: {1,1,1,2} 50: {1,3,3} 70: {1,3,4} %e A334436 Triangle begins: %e A334436 1 %e A334436 2 %e A334436 3 4 %e A334436 5 6 8 %e A334436 7 9 10 12 16 %e A334436 11 15 14 18 20 24 32 %e A334436 13 25 21 27 22 30 28 36 40 48 64 %e A334436 17 35 33 45 26 50 42 54 44 60 56 72 80 96 128 %e A334436 This corresponds to the following tetrangle: %e A334436 0 %e A334436 (1) %e A334436 (2)(11) %e A334436 (3)(12)(111) %e A334436 (4)(22)(13)(112)(1111) %e A334436 (5)(23)(14)(122)(113)(1112)(11111) %t A334436 lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]]; %t A334436 Table[Times@@Prime/@#&/@Reverse[Sort[Sort/@IntegerPartitions[n],lexsort]],{n,0,8}] %Y A334436 Row lengths are A000041. %Y A334436 Compositions under the same order are A066099 (triangle). %Y A334436 The version for non-reversed partitions is A129129. %Y A334436 The constructive version is A228531. %Y A334436 The lengths of these partitions are A333486. %Y A334436 The length-sensitive version is A334435. %Y A334436 The dual version (sum/lex) is A334437. %Y A334436 Lexicographically ordered reversed partitions are A026791. %Y A334436 Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036. %Y A334436 Partitions in increasing-length colexicographic order (sum/length/colex) are A036037. %Y A334436 Reverse-lexicographically ordered partitions are A080577. %Y A334436 Sorting reversed partitions by Heinz number gives A112798. %Y A334436 Graded lexicographically ordered partitions are A193073. %Y A334436 Partitions in colexicographic order (sum/colex) are A211992. %Y A334436 Graded Heinz numbers are A215366. %Y A334436 Sorting partitions by Heinz number gives A296150. %Y A334436 Partitions in dual Abramowitz-Stegun (sum/length/revlex) order are A334439. %Y A334436 Cf. A056239, A124734, A185974, A228100, A333219, A334301, A334302, A334433, A334434, A334438. %K A334436 nonn,tabf %O A334436 0,2 %A A334436 _Gus Wiseman_, May 02 2020