cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334436 Heinz numbers of all reversed integer partitions sorted first by sum and then reverse-lexicographically.

This page as a plain text file.
%I A334436 #14 Sep 22 2023 08:43:40
%S A334436 1,2,3,4,5,6,8,7,9,10,12,16,11,15,14,18,20,24,32,13,25,21,27,22,30,28,
%T A334436 36,40,48,64,17,35,33,45,26,50,42,54,44,60,56,72,80,96,128,19,49,55,
%U A334436 39,75,63,81,34,70,66,90,52,100,84,108,88,120,112,144,160,192,256
%N A334436 Heinz numbers of all reversed integer partitions sorted first by sum and then reverse-lexicographically.
%C A334436 First differs from A334435 at a(22) = 27, A334435(22) = 22.
%C A334436 A permutation of the positive integers.
%C A334436 Reversed integer partitions are finite weakly increasing sequences of positive integers. For non-reversed partitions, see A129129 and A228531.
%C A334436 This is the so-called "Mathematica" order (A080577).
%C A334436 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%H A334436 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a>
%F A334436 A001222(a(n)) = A333486(n).
%e A334436 The sequence of terms together with their prime indices begins:
%e A334436     1: {}            32: {1,1,1,1,1}       42: {1,2,4}
%e A334436     2: {1}           13: {6}               54: {1,2,2,2}
%e A334436     3: {2}           25: {3,3}             44: {1,1,5}
%e A334436     4: {1,1}         21: {2,4}             60: {1,1,2,3}
%e A334436     5: {3}           27: {2,2,2}           56: {1,1,1,4}
%e A334436     6: {1,2}         22: {1,5}             72: {1,1,1,2,2}
%e A334436     8: {1,1,1}       30: {1,2,3}           80: {1,1,1,1,3}
%e A334436     7: {4}           28: {1,1,4}           96: {1,1,1,1,1,2}
%e A334436     9: {2,2}         36: {1,1,2,2}        128: {1,1,1,1,1,1,1}
%e A334436    10: {1,3}         40: {1,1,1,3}         19: {8}
%e A334436    12: {1,1,2}       48: {1,1,1,1,2}       49: {4,4}
%e A334436    16: {1,1,1,1}     64: {1,1,1,1,1,1}     55: {3,5}
%e A334436    11: {5}           17: {7}               39: {2,6}
%e A334436    15: {2,3}         35: {3,4}             75: {2,3,3}
%e A334436    14: {1,4}         33: {2,5}             63: {2,2,4}
%e A334436    18: {1,2,2}       45: {2,2,3}           81: {2,2,2,2}
%e A334436    20: {1,1,3}       26: {1,6}             34: {1,7}
%e A334436    24: {1,1,1,2}     50: {1,3,3}           70: {1,3,4}
%e A334436 Triangle begins:
%e A334436    1
%e A334436    2
%e A334436    3   4
%e A334436    5   6   8
%e A334436    7   9  10  12  16
%e A334436   11  15  14  18  20  24  32
%e A334436   13  25  21  27  22  30  28  36  40  48  64
%e A334436   17  35  33  45  26  50  42  54  44  60  56  72  80  96 128
%e A334436 This corresponds to the following tetrangle:
%e A334436                   0
%e A334436                  (1)
%e A334436                (2)(11)
%e A334436              (3)(12)(111)
%e A334436         (4)(22)(13)(112)(1111)
%e A334436   (5)(23)(14)(122)(113)(1112)(11111)
%t A334436 lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
%t A334436 Table[Times@@Prime/@#&/@Reverse[Sort[Sort/@IntegerPartitions[n],lexsort]],{n,0,8}]
%Y A334436 Row lengths are A000041.
%Y A334436 Compositions under the same order are A066099 (triangle).
%Y A334436 The version for non-reversed partitions is A129129.
%Y A334436 The constructive version is A228531.
%Y A334436 The lengths of these partitions are A333486.
%Y A334436 The length-sensitive version is A334435.
%Y A334436 The dual version (sum/lex) is A334437.
%Y A334436 Lexicographically ordered reversed partitions are A026791.
%Y A334436 Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
%Y A334436 Partitions in increasing-length colexicographic order (sum/length/colex) are A036037.
%Y A334436 Reverse-lexicographically ordered partitions are A080577.
%Y A334436 Sorting reversed partitions by Heinz number gives A112798.
%Y A334436 Graded lexicographically ordered partitions are A193073.
%Y A334436 Partitions in colexicographic order (sum/colex) are A211992.
%Y A334436 Graded Heinz numbers are A215366.
%Y A334436 Sorting partitions by Heinz number gives A296150.
%Y A334436 Partitions in dual Abramowitz-Stegun (sum/length/revlex) order are A334439.
%Y A334436 Cf. A056239, A124734, A185974, A228100, A333219, A334301, A334302, A334433, A334434, A334438.
%K A334436 nonn,tabf
%O A334436 0,2
%A A334436 _Gus Wiseman_, May 02 2020