A334437 Heinz number of the n-th reversed integer partition in graded lexicographical order.
1, 2, 4, 3, 8, 6, 5, 16, 12, 10, 9, 7, 32, 24, 20, 18, 14, 15, 11, 64, 48, 40, 36, 28, 30, 22, 27, 21, 25, 13, 128, 96, 80, 72, 56, 60, 44, 54, 42, 50, 26, 45, 33, 35, 17, 256, 192, 160, 144, 112, 120, 88, 108, 84, 100, 52, 90, 66, 70, 34, 81, 63, 75, 39, 55, 49, 19
Offset: 0
Examples
The sequence of terms together with their prime indices begins: 1: {} 11: {5} 44: {1,1,5} 2: {1} 64: {1,1,1,1,1,1} 54: {1,2,2,2} 4: {1,1} 48: {1,1,1,1,2} 42: {1,2,4} 3: {2} 40: {1,1,1,3} 50: {1,3,3} 8: {1,1,1} 36: {1,1,2,2} 26: {1,6} 6: {1,2} 28: {1,1,4} 45: {2,2,3} 5: {3} 30: {1,2,3} 33: {2,5} 16: {1,1,1,1} 22: {1,5} 35: {3,4} 12: {1,1,2} 27: {2,2,2} 17: {7} 10: {1,3} 21: {2,4} 256: {1,1,1,1,1,1,1,1} 9: {2,2} 25: {3,3} 192: {1,1,1,1,1,1,2} 7: {4} 13: {6} 160: {1,1,1,1,1,3} 32: {1,1,1,1,1} 128: {1,1,1,1,1,1,1} 144: {1,1,1,1,2,2} 24: {1,1,1,2} 96: {1,1,1,1,1,2} 112: {1,1,1,1,4} 20: {1,1,3} 80: {1,1,1,1,3} 120: {1,1,1,2,3} 18: {1,2,2} 72: {1,1,1,2,2} 88: {1,1,1,5} 14: {1,4} 56: {1,1,1,4} 108: {1,1,2,2,2} 15: {2,3} 60: {1,1,2,3} 84: {1,1,2,4} Triangle begins: 1 2 4 3 8 6 5 16 12 10 9 7 32 24 20 18 14 15 11 64 48 40 36 28 30 22 27 21 25 13 128 96 80 72 56 60 44 54 42 50 26 45 33 35 17 This corresponds to the following tetrangle: 0 (1) (11)(2) (111)(12)(3) (1111)(112)(13)(22)(4) (11111)(1112)(113)(122)(14)(23)(5)
Links
- Wikiversity, Lexicographic and colexicographic order
Crossrefs
Row lengths are A000041.
The constructive version is A026791 (triangle).
The length-sensitive version is A185974.
Compositions under the same order are A228351 (triangle).
The version for non-reversed partitions is A334434.
The dual version (sum/revlex) is A334436.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colexicographic order (sum/length/colex) are A036037.
Graded reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded lexicographically ordered partitions are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Graded Heinz numbers are given by A215366.
Sorting partitions by Heinz number gives A296150.
Partitions in dual Abramowitz-Stegun (sum/length/revlex) order are A334439.
Programs
-
Mathematica
lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]]; Table[Times@@Prime/@#&/@Sort[Sort/@IntegerPartitions[n],lexsort],{n,0,8}]
Comments