cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334438 Heinz numbers of all integer partitions sorted first by sum, then by length, and finally reverse-lexicographically.

This page as a plain text file.
%I A334438 #17 Sep 22 2023 07:58:47
%S A334438 1,2,3,4,5,6,8,7,10,9,12,16,11,14,15,20,18,24,32,13,22,21,25,28,30,27,
%T A334438 40,36,48,64,17,26,33,35,44,42,50,45,56,60,54,80,72,96,128,19,34,39,
%U A334438 55,49,52,66,70,63,75,88,84,100,90,81,112,120,108,160,144,192,256
%N A334438 Heinz numbers of all integer partitions sorted first by sum, then by length, and finally reverse-lexicographically.
%C A334438 First differs from A185974 shifted left once at a(76) = 99, A185974(75) = 98.
%C A334438 A permutation of the positive integers.
%C A334438 This is the Abramowitz-Stegun ordering of integer partitions (A334433) except that the finer order is reverse-lexicographic instead of lexicographic. The version for reversed partitions is A334435.
%C A334438 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%C A334438 As a triangle with row lengths A000041, the sequence starts {{1},{2},{3,4},{5,6,8},...}, so offset is 0.
%H A334438 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a>
%F A334438 A001221(a(n)) = A103921(n).
%F A334438 A001222(a(n)) = A036043(n).
%e A334438 The sequence of terms together with their prime indices begins:
%e A334438     1: {}            32: {1,1,1,1,1}       50: {1,3,3}
%e A334438     2: {1}           13: {6}               45: {2,2,3}
%e A334438     3: {2}           22: {1,5}             56: {1,1,1,4}
%e A334438     4: {1,1}         21: {2,4}             60: {1,1,2,3}
%e A334438     5: {3}           25: {3,3}             54: {1,2,2,2}
%e A334438     6: {1,2}         28: {1,1,4}           80: {1,1,1,1,3}
%e A334438     8: {1,1,1}       30: {1,2,3}           72: {1,1,1,2,2}
%e A334438     7: {4}           27: {2,2,2}           96: {1,1,1,1,1,2}
%e A334438    10: {1,3}         40: {1,1,1,3}        128: {1,1,1,1,1,1,1}
%e A334438     9: {2,2}         36: {1,1,2,2}         19: {8}
%e A334438    12: {1,1,2}       48: {1,1,1,1,2}       34: {1,7}
%e A334438    16: {1,1,1,1}     64: {1,1,1,1,1,1}     39: {2,6}
%e A334438    11: {5}           17: {7}               55: {3,5}
%e A334438    14: {1,4}         26: {1,6}             49: {4,4}
%e A334438    15: {2,3}         33: {2,5}             52: {1,1,6}
%e A334438    20: {1,1,3}       35: {3,4}             66: {1,2,5}
%e A334438    18: {1,2,2}       44: {1,1,5}           70: {1,3,4}
%e A334438    24: {1,1,1,2}     42: {1,2,4}           63: {2,2,4}
%e A334438 Triangle begins:
%e A334438    1
%e A334438    2
%e A334438    3   4
%e A334438    5   6   8
%e A334438    7  10   9  12  16
%e A334438   11  14  15  20  18  24  32
%e A334438   13  22  21  25  28  30  27  40  36  48  64
%e A334438   17  26  33  35  44  42  50  45  56  60  54  80  72  96 128
%e A334438 This corresponds to the following tetrangle:
%e A334438                   0
%e A334438                  (1)
%e A334438                (2)(11)
%e A334438              (3)(21)(111)
%e A334438         (4)(31)(22)(211)(1111)
%e A334438   (5)(41)(32)(311)(221)(2111)(11111)
%t A334438 revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]<Length[c],OrderedQ[{c,f}]];
%t A334438 Join@@Table[Times@@Prime/@#&/@Sort[IntegerPartitions[n],revlensort],{n,0,8}]
%Y A334438 Row lengths are A000041.
%Y A334438 Ignoring length gives A129129.
%Y A334438 Compositions under the same order are A296774 (triangle).
%Y A334438 The dual version (sum/length/lex) is A334433.
%Y A334438 The version for reversed partitions is A334435.
%Y A334438 The constructive version is A334439 (triangle).
%Y A334438 Lexicographically ordered reversed partitions are A026791.
%Y A334438 Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
%Y A334438 Partitions in increasing-length colexicographic order (sum/length/colex) are A036037.
%Y A334438 Reverse-lexicographically ordered partitions are A080577.
%Y A334438 Sorting reversed partitions by Heinz number gives A112798.
%Y A334438 Graded lexicographically ordered partitions are A193073.
%Y A334438 Partitions in colexicographic order (sum/colex) are A211992.
%Y A334438 Graded Heinz numbers are given by A215366.
%Y A334438 Sorting partitions by Heinz number gives A296150.
%Y A334438 Cf. A056239, A066099, A124734, A185974, A228100, A228531, A333219, A334301, A334302, A334434, A334436, A334437.
%K A334438 nonn,tabf
%O A334438 0,2
%A A334438 _Gus Wiseman_, May 03 2020