This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334438 #17 Sep 22 2023 07:58:47 %S A334438 1,2,3,4,5,6,8,7,10,9,12,16,11,14,15,20,18,24,32,13,22,21,25,28,30,27, %T A334438 40,36,48,64,17,26,33,35,44,42,50,45,56,60,54,80,72,96,128,19,34,39, %U A334438 55,49,52,66,70,63,75,88,84,100,90,81,112,120,108,160,144,192,256 %N A334438 Heinz numbers of all integer partitions sorted first by sum, then by length, and finally reverse-lexicographically. %C A334438 First differs from A185974 shifted left once at a(76) = 99, A185974(75) = 98. %C A334438 A permutation of the positive integers. %C A334438 This is the Abramowitz-Stegun ordering of integer partitions (A334433) except that the finer order is reverse-lexicographic instead of lexicographic. The version for reversed partitions is A334435. %C A334438 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A334438 As a triangle with row lengths A000041, the sequence starts {{1},{2},{3,4},{5,6,8},...}, so offset is 0. %H A334438 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %F A334438 A001221(a(n)) = A103921(n). %F A334438 A001222(a(n)) = A036043(n). %e A334438 The sequence of terms together with their prime indices begins: %e A334438 1: {} 32: {1,1,1,1,1} 50: {1,3,3} %e A334438 2: {1} 13: {6} 45: {2,2,3} %e A334438 3: {2} 22: {1,5} 56: {1,1,1,4} %e A334438 4: {1,1} 21: {2,4} 60: {1,1,2,3} %e A334438 5: {3} 25: {3,3} 54: {1,2,2,2} %e A334438 6: {1,2} 28: {1,1,4} 80: {1,1,1,1,3} %e A334438 8: {1,1,1} 30: {1,2,3} 72: {1,1,1,2,2} %e A334438 7: {4} 27: {2,2,2} 96: {1,1,1,1,1,2} %e A334438 10: {1,3} 40: {1,1,1,3} 128: {1,1,1,1,1,1,1} %e A334438 9: {2,2} 36: {1,1,2,2} 19: {8} %e A334438 12: {1,1,2} 48: {1,1,1,1,2} 34: {1,7} %e A334438 16: {1,1,1,1} 64: {1,1,1,1,1,1} 39: {2,6} %e A334438 11: {5} 17: {7} 55: {3,5} %e A334438 14: {1,4} 26: {1,6} 49: {4,4} %e A334438 15: {2,3} 33: {2,5} 52: {1,1,6} %e A334438 20: {1,1,3} 35: {3,4} 66: {1,2,5} %e A334438 18: {1,2,2} 44: {1,1,5} 70: {1,3,4} %e A334438 24: {1,1,1,2} 42: {1,2,4} 63: {2,2,4} %e A334438 Triangle begins: %e A334438 1 %e A334438 2 %e A334438 3 4 %e A334438 5 6 8 %e A334438 7 10 9 12 16 %e A334438 11 14 15 20 18 24 32 %e A334438 13 22 21 25 28 30 27 40 36 48 64 %e A334438 17 26 33 35 44 42 50 45 56 60 54 80 72 96 128 %e A334438 This corresponds to the following tetrangle: %e A334438 0 %e A334438 (1) %e A334438 (2)(11) %e A334438 (3)(21)(111) %e A334438 (4)(31)(22)(211)(1111) %e A334438 (5)(41)(32)(311)(221)(2111)(11111) %t A334438 revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]<Length[c],OrderedQ[{c,f}]]; %t A334438 Join@@Table[Times@@Prime/@#&/@Sort[IntegerPartitions[n],revlensort],{n,0,8}] %Y A334438 Row lengths are A000041. %Y A334438 Ignoring length gives A129129. %Y A334438 Compositions under the same order are A296774 (triangle). %Y A334438 The dual version (sum/length/lex) is A334433. %Y A334438 The version for reversed partitions is A334435. %Y A334438 The constructive version is A334439 (triangle). %Y A334438 Lexicographically ordered reversed partitions are A026791. %Y A334438 Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036. %Y A334438 Partitions in increasing-length colexicographic order (sum/length/colex) are A036037. %Y A334438 Reverse-lexicographically ordered partitions are A080577. %Y A334438 Sorting reversed partitions by Heinz number gives A112798. %Y A334438 Graded lexicographically ordered partitions are A193073. %Y A334438 Partitions in colexicographic order (sum/colex) are A211992. %Y A334438 Graded Heinz numbers are given by A215366. %Y A334438 Sorting partitions by Heinz number gives A296150. %Y A334438 Cf. A056239, A066099, A124734, A185974, A228100, A228531, A333219, A334301, A334302, A334434, A334436, A334437. %K A334438 nonn,tabf %O A334438 0,2 %A A334438 _Gus Wiseman_, May 03 2020