cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334439 Irregular triangle whose rows are all integer partitions sorted first by sum, then by length, and finally reverse-lexicographically.

This page as a plain text file.
%I A334439 #15 Sep 22 2023 05:18:21
%S A334439 1,2,1,1,3,2,1,1,1,1,4,3,1,2,2,2,1,1,1,1,1,1,5,4,1,3,2,3,1,1,2,2,1,2,
%T A334439 1,1,1,1,1,1,1,1,6,5,1,4,2,3,3,4,1,1,3,2,1,2,2,2,3,1,1,1,2,2,1,1,2,1,
%U A334439 1,1,1,1,1,1,1,1,1,7,6,1,5,2,4,3,5,1,1
%N A334439 Irregular triangle whose rows are all integer partitions sorted first by sum, then by length, and finally reverse-lexicographically.
%C A334439 First differs from A036037 for partitions of 9. Namely, this sequence has (5,2,2) before (4,4,1), while A036037 has (4,4,1) before (5,2,2).
%C A334439 This is the Abramowitz-Stegun ordering of integer partitions (A334301) except that the finer order is reverse-lexicographic instead of lexicographic. The version for reversed partitions is A334302.
%H A334439 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a>
%e A334439 The sequence of all partitions begins:
%e A334439   ()      (32)     (21111)   (22111)    (4211)      (63)
%e A334439   (1)     (311)    (111111)  (211111)   (3311)      (54)
%e A334439   (2)     (221)    (7)       (1111111)  (3221)      (711)
%e A334439   (11)    (2111)   (61)      (8)        (2222)      (621)
%e A334439   (3)     (11111)  (52)      (71)       (41111)     (531)
%e A334439   (21)    (6)      (43)      (62)       (32111)     (522)
%e A334439   (111)   (51)     (511)     (53)       (22211)     (441)
%e A334439   (4)     (42)     (421)     (44)       (311111)    (432)
%e A334439   (31)    (33)     (331)     (611)      (221111)    (333)
%e A334439   (22)    (411)    (322)     (521)      (2111111)   (6111)
%e A334439   (211)   (321)    (4111)    (431)      (11111111)  (5211)
%e A334439   (1111)  (222)    (3211)    (422)      (9)         (4311)
%e A334439   (5)     (3111)   (2221)    (332)      (81)        (4221)
%e A334439   (41)    (2211)   (31111)   (5111)     (72)        (3321)
%e A334439 This sequence can also be interpreted as the following triangle, whose n-th row is itself a finite triangle with A000041(n) rows.
%e A334439                   0
%e A334439                  (1)
%e A334439                (2)(11)
%e A334439              (3)(21)(111)
%e A334439         (4)(31)(22)(211)(1111)
%e A334439   (5)(41)(32)(311)(221)(2111)(11111)
%e A334439 Showing partitions as their Heinz numbers (see A334438) gives:
%e A334439    1
%e A334439    2
%e A334439    3   4
%e A334439    5   6   8
%e A334439    7  10   9  12  16
%e A334439   11  14  15  20  18  24  32
%e A334439   13  22  21  25  28  30  27  40  36  48  64
%e A334439   17  26  33  35  44  42  50  45  56  60  54  80  72  96 128
%t A334439 revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]<Length[c],OrderedQ[{c,f}]];
%t A334439 Join@@Table[Sort[IntegerPartitions[n],revlensort],{n,0,8}]
%Y A334439 The version for colex instead of revlex is A036037.
%Y A334439 Row lengths are A036043.
%Y A334439 Ignoring length gives A080577.
%Y A334439 Number of distinct elements in row n appears to be A103921(n).
%Y A334439 The version for compositions is A296774.
%Y A334439 The Abramowitz-Stegun version (sum/length/lex) is A334301.
%Y A334439 The version for reversed partitions is A334302.
%Y A334439 Taking Heinz numbers gives A334438.
%Y A334439 The version with partitions reversed is A334442.
%Y A334439 Lexicographically ordered reversed partitions are A026791.
%Y A334439 Lexicographically ordered partitions are A193073.
%Y A334439 Sorting partitions by Heinz number gives A296150.
%Y A334439 Cf. A000041, A036036, A112798, A124734, A129129, A185974, A228100, A228531, A334433, A334435, A334436.
%K A334439 nonn,tabf
%O A334439 0,2
%A A334439 _Gus Wiseman_, May 03 2020