This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334439 #15 Sep 22 2023 05:18:21 %S A334439 1,2,1,1,3,2,1,1,1,1,4,3,1,2,2,2,1,1,1,1,1,1,5,4,1,3,2,3,1,1,2,2,1,2, %T A334439 1,1,1,1,1,1,1,1,6,5,1,4,2,3,3,4,1,1,3,2,1,2,2,2,3,1,1,1,2,2,1,1,2,1, %U A334439 1,1,1,1,1,1,1,1,1,7,6,1,5,2,4,3,5,1,1 %N A334439 Irregular triangle whose rows are all integer partitions sorted first by sum, then by length, and finally reverse-lexicographically. %C A334439 First differs from A036037 for partitions of 9. Namely, this sequence has (5,2,2) before (4,4,1), while A036037 has (4,4,1) before (5,2,2). %C A334439 This is the Abramowitz-Stegun ordering of integer partitions (A334301) except that the finer order is reverse-lexicographic instead of lexicographic. The version for reversed partitions is A334302. %H A334439 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %e A334439 The sequence of all partitions begins: %e A334439 () (32) (21111) (22111) (4211) (63) %e A334439 (1) (311) (111111) (211111) (3311) (54) %e A334439 (2) (221) (7) (1111111) (3221) (711) %e A334439 (11) (2111) (61) (8) (2222) (621) %e A334439 (3) (11111) (52) (71) (41111) (531) %e A334439 (21) (6) (43) (62) (32111) (522) %e A334439 (111) (51) (511) (53) (22211) (441) %e A334439 (4) (42) (421) (44) (311111) (432) %e A334439 (31) (33) (331) (611) (221111) (333) %e A334439 (22) (411) (322) (521) (2111111) (6111) %e A334439 (211) (321) (4111) (431) (11111111) (5211) %e A334439 (1111) (222) (3211) (422) (9) (4311) %e A334439 (5) (3111) (2221) (332) (81) (4221) %e A334439 (41) (2211) (31111) (5111) (72) (3321) %e A334439 This sequence can also be interpreted as the following triangle, whose n-th row is itself a finite triangle with A000041(n) rows. %e A334439 0 %e A334439 (1) %e A334439 (2)(11) %e A334439 (3)(21)(111) %e A334439 (4)(31)(22)(211)(1111) %e A334439 (5)(41)(32)(311)(221)(2111)(11111) %e A334439 Showing partitions as their Heinz numbers (see A334438) gives: %e A334439 1 %e A334439 2 %e A334439 3 4 %e A334439 5 6 8 %e A334439 7 10 9 12 16 %e A334439 11 14 15 20 18 24 32 %e A334439 13 22 21 25 28 30 27 40 36 48 64 %e A334439 17 26 33 35 44 42 50 45 56 60 54 80 72 96 128 %t A334439 revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]<Length[c],OrderedQ[{c,f}]]; %t A334439 Join@@Table[Sort[IntegerPartitions[n],revlensort],{n,0,8}] %Y A334439 The version for colex instead of revlex is A036037. %Y A334439 Row lengths are A036043. %Y A334439 Ignoring length gives A080577. %Y A334439 Number of distinct elements in row n appears to be A103921(n). %Y A334439 The version for compositions is A296774. %Y A334439 The Abramowitz-Stegun version (sum/length/lex) is A334301. %Y A334439 The version for reversed partitions is A334302. %Y A334439 Taking Heinz numbers gives A334438. %Y A334439 The version with partitions reversed is A334442. %Y A334439 Lexicographically ordered reversed partitions are A026791. %Y A334439 Lexicographically ordered partitions are A193073. %Y A334439 Sorting partitions by Heinz number gives A296150. %Y A334439 Cf. A000041, A036036, A112798, A124734, A129129, A185974, A228100, A228531, A334433, A334435, A334436. %K A334439 nonn,tabf %O A334439 0,2 %A A334439 _Gus Wiseman_, May 03 2020