This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334440 #26 Sep 22 2023 08:45:50 %S A334440 0,1,1,1,1,2,1,1,1,2,2,1,1,2,2,2,2,2,1,1,1,2,2,1,3,2,2,2,2,1,1,2,2,2, %T A334440 2,2,3,2,2,3,2,2,2,2,1,1,1,2,2,2,2,2,3,3,2,1,3,2,3,2,2,3,2,2,2,2,1,1, %U A334440 2,2,2,2,1,3,2,2,3,3,2,2,3,3,3,3,2,2,3 %N A334440 Irregular triangle T(n,k) read by rows: row n lists numbers of distinct parts of the n-th integer partition in Abramowitz-Stegun (sum/length/lex) order. %C A334440 The total number of parts, counting duplicates, is A036043. The version for reversed partitions is A103921. %H A334440 Robert Price, <a href="/A334440/b334440.txt">Table of n, a(n) for n = 0..9295</a> (25 rows). %H A334440 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %F A334440 a(n) = A001221(A334433(n)). %e A334440 Triangle begins: %e A334440 0 %e A334440 1 %e A334440 1 1 %e A334440 1 2 1 %e A334440 1 1 2 2 1 %e A334440 1 2 2 2 2 2 1 %e A334440 1 1 2 2 1 3 2 2 2 2 1 %e A334440 1 2 2 2 2 2 3 2 2 3 2 2 2 2 1 %e A334440 1 1 2 2 2 2 2 3 3 2 1 3 2 3 2 2 3 2 2 2 2 1 %t A334440 Join@@Table[Length/@Union/@Sort[IntegerPartitions[n]],{n,0,10}] %Y A334440 Row lengths are A000041. %Y A334440 The number of not necessarily distinct parts is A036043. %Y A334440 The version for reversed partitions is A103921. %Y A334440 Ignoring length (sum/lex) gives A103921 (also). %Y A334440 a(n) is the number of distinct elements in row n of A334301. %Y A334440 The maximum part of the same partition is A334441. %Y A334440 Lexicographically ordered reversed partitions are A026791. %Y A334440 Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036. %Y A334440 Partitions in increasing-length colex order (sum/length/colex) are A036037. %Y A334440 Graded reverse-lexicographically ordered partitions are A080577. %Y A334440 Partitions counted by sum and number of distinct parts are A116608. %Y A334440 Graded lexicographically ordered partitions are A193073. %Y A334440 Partitions in colexicographic order (sum/colex) are A211992. %Y A334440 Partitions in dual Abramowitz-Stegun (sum/length/revlex) order are A334439. %Y A334440 Cf. A001221, A049085, A124734, A185974, A296774, A299755, A334028, A334302, A334433, A334434, A334435, A334438. %K A334440 nonn,tabf %O A334440 0,6 %A A334440 _Gus Wiseman_, May 05 2020