This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334441 #17 Sep 22 2023 08:45:02 %S A334441 0,1,2,1,3,2,1,4,2,3,2,1,5,3,4,2,3,2,1,6,3,4,5,2,3,4,2,3,2,1,7,4,5,6, %T A334441 3,3,4,5,2,3,4,2,3,2,1,8,4,5,6,7,3,4,4,5,6,2,3,3,4,5,2,3,4,2,3,2,1,9, %U A334441 5,6,7,8,3,4,4,5,5,6,7,3,3,4,4,5,6,2,3,3 %N A334441 Maximum part of the n-th integer partition in Abramowitz-Stegun (sum/length/lex) order; a(0) = 0. %C A334441 First differs from A049085 at a(8) = 2, A049085(8) = 3. %C A334441 The parts of a partition are read in the usual (weakly decreasing) order. The version for reversed (weakly increasing) partitions is A049085. %H A334441 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %e A334441 Triangle begins: %e A334441 0 %e A334441 1 %e A334441 2 1 %e A334441 3 2 1 %e A334441 4 2 3 2 1 %e A334441 5 3 4 2 3 2 1 %e A334441 6 3 4 5 2 3 4 2 3 2 1 %e A334441 7 4 5 6 3 3 4 5 2 3 4 2 3 2 1 %e A334441 8 4 5 6 7 3 4 4 5 6 2 3 3 4 5 2 3 4 2 3 2 1 %t A334441 Table[If[n==0,{0},Max/@Sort[IntegerPartitions[n]]],{n,0,10}] %Y A334441 Row lengths are A000041. %Y A334441 The length of the same partition is A036043. %Y A334441 Ignoring partition length (sum/lex) gives A036043 also. %Y A334441 The version for reversed partitions is A049085. %Y A334441 a(n) is the maximum element in row n of A334301. %Y A334441 The number of distinct parts in the same partition is A334440. %Y A334441 Lexicographically ordered reversed partitions are A026791. %Y A334441 Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036. %Y A334441 Partitions in increasing-length colex order (sum/length/colex) are A036037. %Y A334441 Graded reverse-lexicographically ordered partitions are A080577. %Y A334441 Partitions counted by sum and number of distinct parts are A116608. %Y A334441 Graded lexicographically ordered partitions are A193073. %Y A334441 Partitions in colexicographic order (sum/colex) are A211992. %Y A334441 Partitions in dual Abramowitz-Stegun (sum/length/revlex) order are A334439. %Y A334441 Cf. A001221, A103921, A124734, A185974, A296774, A299755, A334302, A334433, A334434, A334435, A334438. %K A334441 nonn,tabf %O A334441 0,3 %A A334441 _Gus Wiseman_, May 06 2020