cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334441 Maximum part of the n-th integer partition in Abramowitz-Stegun (sum/length/lex) order; a(0) = 0.

This page as a plain text file.
%I A334441 #17 Sep 22 2023 08:45:02
%S A334441 0,1,2,1,3,2,1,4,2,3,2,1,5,3,4,2,3,2,1,6,3,4,5,2,3,4,2,3,2,1,7,4,5,6,
%T A334441 3,3,4,5,2,3,4,2,3,2,1,8,4,5,6,7,3,4,4,5,6,2,3,3,4,5,2,3,4,2,3,2,1,9,
%U A334441 5,6,7,8,3,4,4,5,5,6,7,3,3,4,4,5,6,2,3,3
%N A334441 Maximum part of the n-th integer partition in Abramowitz-Stegun (sum/length/lex) order; a(0) = 0.
%C A334441 First differs from A049085 at a(8) = 2, A049085(8) = 3.
%C A334441 The parts of a partition are read in the usual (weakly decreasing) order. The version for reversed (weakly increasing) partitions is A049085.
%H A334441 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a>
%e A334441 Triangle begins:
%e A334441   0
%e A334441   1
%e A334441   2 1
%e A334441   3 2 1
%e A334441   4 2 3 2 1
%e A334441   5 3 4 2 3 2 1
%e A334441   6 3 4 5 2 3 4 2 3 2 1
%e A334441   7 4 5 6 3 3 4 5 2 3 4 2 3 2 1
%e A334441   8 4 5 6 7 3 4 4 5 6 2 3 3 4 5 2 3 4 2 3 2 1
%t A334441 Table[If[n==0,{0},Max/@Sort[IntegerPartitions[n]]],{n,0,10}]
%Y A334441 Row lengths are A000041.
%Y A334441 The length of the same partition is A036043.
%Y A334441 Ignoring partition length (sum/lex) gives A036043 also.
%Y A334441 The version for reversed partitions is A049085.
%Y A334441 a(n) is the maximum element in row n of A334301.
%Y A334441 The number of distinct parts in the same partition is A334440.
%Y A334441 Lexicographically ordered reversed partitions are A026791.
%Y A334441 Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
%Y A334441 Partitions in increasing-length colex order (sum/length/colex) are A036037.
%Y A334441 Graded reverse-lexicographically ordered partitions are A080577.
%Y A334441 Partitions counted by sum and number of distinct parts are A116608.
%Y A334441 Graded lexicographically ordered partitions are A193073.
%Y A334441 Partitions in colexicographic order (sum/colex) are A211992.
%Y A334441 Partitions in dual Abramowitz-Stegun (sum/length/revlex) order are A334439.
%Y A334441 Cf. A001221, A103921, A124734, A185974, A296774, A299755, A334302, A334433, A334434, A334435, A334438.
%K A334441 nonn,tabf
%O A334441 0,3
%A A334441 _Gus Wiseman_, May 06 2020