This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334442 #20 Sep 22 2023 08:46:46 %S A334442 1,2,1,1,3,1,2,1,1,1,4,1,3,2,2,1,1,2,1,1,1,1,5,1,4,2,3,1,1,3,1,2,2,1, %T A334442 1,1,2,1,1,1,1,1,6,1,5,2,4,3,3,1,1,4,1,2,3,2,2,2,1,1,1,3,1,1,2,2,1,1, %U A334442 1,1,2,1,1,1,1,1,1,7,1,6,2,5,3,4,1,1,5 %N A334442 Irregular triangle whose reversed rows are all integer partitions sorted first by sum, then by length, and finally reverse-lexicographically. %C A334442 First differs from A036036 for reversed partitions of 9. Namely, this sequence has (2,2,5) before (1,4,4), while A036036 has (1,4,4) before (2,2,5). %H A334442 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a> %e A334442 The sequence of all partitions begins: %e A334442 () (2,3) (1,1,1,1,2) (1,1,1,2,2) %e A334442 (1) (1,1,3) (1,1,1,1,1,1) (1,1,1,1,1,2) %e A334442 (2) (1,2,2) (7) (1,1,1,1,1,1,1) %e A334442 (1,1) (1,1,1,2) (1,6) (8) %e A334442 (3) (1,1,1,1,1) (2,5) (1,7) %e A334442 (1,2) (6) (3,4) (2,6) %e A334442 (1,1,1) (1,5) (1,1,5) (3,5) %e A334442 (4) (2,4) (1,2,4) (4,4) %e A334442 (1,3) (3,3) (1,3,3) (1,1,6) %e A334442 (2,2) (1,1,4) (2,2,3) (1,2,5) %e A334442 (1,1,2) (1,2,3) (1,1,1,4) (1,3,4) %e A334442 (1,1,1,1) (2,2,2) (1,1,2,3) (2,2,4) %e A334442 (5) (1,1,1,3) (1,2,2,2) (2,3,3) %e A334442 (1,4) (1,1,2,2) (1,1,1,1,3) (1,1,1,5) %e A334442 This sequence can also be interpreted as the following triangle: %e A334442 0 %e A334442 (1) %e A334442 (2)(11) %e A334442 (3)(12)(111) %e A334442 (4)(13)(22)(112)(1111) %e A334442 (5)(14)(23)(113)(122)(1112)(11111) %e A334442 Taking Heinz numbers (A334438) gives: %e A334442 1 %e A334442 2 %e A334442 3 4 %e A334442 5 6 8 %e A334442 7 10 9 12 16 %e A334442 11 14 15 20 18 24 32 %e A334442 13 22 21 25 28 30 27 40 36 48 64 %e A334442 17 26 33 35 44 42 50 45 56 60 54 80 72 96 128 %t A334442 revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]<Length[c],OrderedQ[{c,f}]]; %t A334442 Join@@Reverse/@Join@@Table[Sort[IntegerPartitions[n],revlensort],{n,0,8}] %o A334442 (PARI) A334442_row(n)=vecsort(partitions(n),p->concat(#p,-Vecrev(p))) \\ Rows of triangle defined in EXAMPLE (all partitions of n). Wrap into [Vec(p)|p<-...] to avoid "Vecsmall". - _M. F. Hasler_, May 14 2020 %Y A334442 Row lengths are A036043. %Y A334442 The version for reversed partitions is A334301. %Y A334442 The version for colex instead of revlex is A334302. %Y A334442 Taking Heinz numbers gives A334438. %Y A334442 The version with rows reversed is A334439. %Y A334442 Ignoring length gives A335122. %Y A334442 Lexicographically ordered reversed partitions are A026791. %Y A334442 Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036. %Y A334442 Partitions in increasing-length colex order (sum/length/colex) are A036037. %Y A334442 Reverse-lexicographically ordered partitions are A080577. %Y A334442 Lexicographically ordered partitions are A193073. %Y A334442 Partitions in colexicographic order (sum/colex) are A211992. %Y A334442 Sorting partitions by Heinz number gives A296150. %Y A334442 Cf. A026791, A112798, A124734, A129129, A185974, A228100, A228531, A296774, A334433, A334435, A334436. %K A334442 nonn,tabf %O A334442 0,2 %A A334442 _Gus Wiseman_, May 07 2020