cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334442 Irregular triangle whose reversed rows are all integer partitions sorted first by sum, then by length, and finally reverse-lexicographically.

This page as a plain text file.
%I A334442 #20 Sep 22 2023 08:46:46
%S A334442 1,2,1,1,3,1,2,1,1,1,4,1,3,2,2,1,1,2,1,1,1,1,5,1,4,2,3,1,1,3,1,2,2,1,
%T A334442 1,1,2,1,1,1,1,1,6,1,5,2,4,3,3,1,1,4,1,2,3,2,2,2,1,1,1,3,1,1,2,2,1,1,
%U A334442 1,1,2,1,1,1,1,1,1,7,1,6,2,5,3,4,1,1,5
%N A334442 Irregular triangle whose reversed rows are all integer partitions sorted first by sum, then by length, and finally reverse-lexicographically.
%C A334442 First differs from A036036 for reversed partitions of 9. Namely, this sequence has (2,2,5) before (1,4,4), while A036036 has (1,4,4) before (2,2,5).
%H A334442 Wikiversity, <a href="https://en.wikiversity.org/wiki/Lexicographic_and_colexicographic_order">Lexicographic and colexicographic order</a>
%e A334442 The sequence of all partitions begins:
%e A334442   ()         (2,3)        (1,1,1,1,2)    (1,1,1,2,2)
%e A334442   (1)        (1,1,3)      (1,1,1,1,1,1)  (1,1,1,1,1,2)
%e A334442   (2)        (1,2,2)      (7)            (1,1,1,1,1,1,1)
%e A334442   (1,1)      (1,1,1,2)    (1,6)          (8)
%e A334442   (3)        (1,1,1,1,1)  (2,5)          (1,7)
%e A334442   (1,2)      (6)          (3,4)          (2,6)
%e A334442   (1,1,1)    (1,5)        (1,1,5)        (3,5)
%e A334442   (4)        (2,4)        (1,2,4)        (4,4)
%e A334442   (1,3)      (3,3)        (1,3,3)        (1,1,6)
%e A334442   (2,2)      (1,1,4)      (2,2,3)        (1,2,5)
%e A334442   (1,1,2)    (1,2,3)      (1,1,1,4)      (1,3,4)
%e A334442   (1,1,1,1)  (2,2,2)      (1,1,2,3)      (2,2,4)
%e A334442   (5)        (1,1,1,3)    (1,2,2,2)      (2,3,3)
%e A334442   (1,4)      (1,1,2,2)    (1,1,1,1,3)    (1,1,1,5)
%e A334442 This sequence can also be interpreted as the following triangle:
%e A334442                   0
%e A334442                  (1)
%e A334442                (2)(11)
%e A334442              (3)(12)(111)
%e A334442         (4)(13)(22)(112)(1111)
%e A334442   (5)(14)(23)(113)(122)(1112)(11111)
%e A334442 Taking Heinz numbers (A334438) gives:
%e A334442    1
%e A334442    2
%e A334442    3   4
%e A334442    5   6   8
%e A334442    7  10   9  12  16
%e A334442   11  14  15  20  18  24  32
%e A334442   13  22  21  25  28  30  27  40  36  48  64
%e A334442   17  26  33  35  44  42  50  45  56  60  54  80  72  96 128
%t A334442 revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]<Length[c],OrderedQ[{c,f}]];
%t A334442 Join@@Reverse/@Join@@Table[Sort[IntegerPartitions[n],revlensort],{n,0,8}]
%o A334442 (PARI) A334442_row(n)=vecsort(partitions(n),p->concat(#p,-Vecrev(p))) \\ Rows of triangle defined in EXAMPLE (all partitions of n). Wrap into [Vec(p)|p<-...] to avoid "Vecsmall". - _M. F. Hasler_, May 14 2020
%Y A334442 Row lengths are A036043.
%Y A334442 The version for reversed partitions is A334301.
%Y A334442 The version for colex instead of revlex is A334302.
%Y A334442 Taking Heinz numbers gives A334438.
%Y A334442 The version with rows reversed is A334439.
%Y A334442 Ignoring length gives A335122.
%Y A334442 Lexicographically ordered reversed partitions are A026791.
%Y A334442 Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
%Y A334442 Partitions in increasing-length colex order (sum/length/colex) are A036037.
%Y A334442 Reverse-lexicographically ordered partitions are A080577.
%Y A334442 Lexicographically ordered partitions are A193073.
%Y A334442 Partitions in colexicographic order (sum/colex) are A211992.
%Y A334442 Sorting partitions by Heinz number gives A296150.
%Y A334442 Cf. A026791, A112798, A124734, A129129, A185974, A228100, A228531, A296774, A334433, A334435, A334436.
%K A334442 nonn,tabf
%O A334442 0,2
%A A334442 _Gus Wiseman_, May 07 2020