cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334449 Decimal expansion of Product_{k>=1} (1 + 1/A002144(k)^5).

Original entry on oeis.org

1, 0, 0, 0, 3, 2, 3, 4, 7, 5, 1, 4, 8, 0, 7, 1, 6, 3, 8, 6, 0, 3, 6, 8, 6, 4, 2, 7, 3, 3, 9, 9, 4, 2, 3, 6, 9, 2, 6, 5, 2, 4, 6, 5, 5, 2, 2, 0, 2, 7, 3, 7, 9, 8, 0, 4, 0, 7, 5, 0, 7, 1, 6, 4, 8, 5, 9, 9, 6, 3, 8, 1, 1, 3, 7, 4, 6, 8, 0, 4, 2, 2, 4, 4, 0, 6, 0, 5, 6, 3, 2, 9, 6, 0, 0, 1, 4, 1, 9, 1, 2, 7, 9, 3, 2
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 30 2020

Keywords

Comments

In general, for s>0, Product_{k>=1} (1 + 1/A002144(k)^(2*s+1))/(1 - 1/A002144(k)^(2*s+1)) = Pi^(2*s+1) * A000364(s) * zeta(2*s+1) / ((2^(2*s+2) + 2) * (2*s)! * zeta(4*s+2)). - Dimitris Valianatos, May 01 2020
In general, for s>1, Product_{k>=1} (1 + 1/A002144(k)^s)/(1 - 1/A002144(k)^s) = (zeta(s, 1/4) - zeta(s, 3/4)) * zeta(s) / (2^s * (2^s + 1) * zeta(2*s)).

Examples

			1.0003234751480716386036864273399423692652465522027379804075071648599638113746...
		

References

  • B. C. Berndt, Ramanujan's notebook part IV, Springer-Verlag, 1994, p. 64-65.

Crossrefs

Formula

A334449 / A334450 = 4725*zeta(5)/(16*Pi^5).
A334449 * A334451 = 90720*zeta(5)/Pi^10.

Extensions

More digits from Vaclav Kotesovec, Jun 27 2020