This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334454 #22 Oct 14 2023 10:54:27 %S A334454 0,1,3,6,10,14,20,25,31,37,47,53,65,73,82,90,106,115,133,143,155,167, %T A334454 189,199,215,229,244,257,285,297,327,342,360,378,398,411,447,467,488, %U A334454 504,544,561,603,623,644,668,714,731,762,784,811,834,886 %N A334454 Number of distinct composite numbers in the n X n multiplication table. %C A334454 Number of distinct products i*j for 2<=i<=j<=n. - _Chai Wah Wu_, Oct 14 2023 %e A334454 There are a(7) = 20 distinct composite numbers in the 7x7 multiplication table: %e A334454 1 2 3 4 5 6 7 %e A334454 4* 6* 8* 10* 12 14* %e A334454 9* 12* 15* 18* 21* %e A334454 16* 20* 24* 28* %e A334454 25* 30* 35* %e A334454 36* 42* %e A334454 49* %p A334454 A334454 := proc(n) %p A334454 local dcom,i,j; %p A334454 dcom := {} ; %p A334454 for i from 1 to n do %p A334454 for j from 1 to i do %p A334454 if not isprime(i*j) and i*j> 1 then %p A334454 dcom := dcom union {i*j} ; %p A334454 end if; %p A334454 end do: %p A334454 end do: %p A334454 print(n,dcom) ; %p A334454 nops(dcom) ; %p A334454 end proc: %p A334454 seq(A334454(n),n=1..70) ; # _R. J. Mathar_, Oct 02 2020 %o A334454 (Python) %o A334454 def A334454(n): return len({i*j for i in range(2,n+1) for j in range(2,i+1)}) # _Chai Wah Wu_, Oct 14 2023 %Y A334454 Cf. A027424, A333996. %K A334454 nonn %O A334454 1,3 %A A334454 _Charles Kusniec_, Sep 08 2020