A334461 a(n) is the number of partitions of n into consecutive parts that differ by 4.
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 4, 1, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 5, 1, 2, 2, 3, 2, 4, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 1, 4, 1, 4, 2, 2, 1, 5, 2, 2, 2, 3, 1, 5, 2, 3, 2, 2, 2, 5, 1, 3, 2, 4, 1, 4, 1, 3, 4
Offset: 1
Keywords
Examples
For n = 28 there are three partitions of 28 into consecutive parts that differ by 4, including 28 as a valid partition. They are [28], [16, 12] and [13, 9, 5, 1]. So a(28) = 3.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
nmax = 105; col[k_] := col[k] = CoefficientList[Sum[x^(n(k n - k + 2)/2 - 1)/(1 - x^n), {n, 1, nmax}] + O[x]^nmax, x]; a[n_] := col[4][[n]]; Array[a, nmax] (* Jean-François Alcover, Nov 30 2020 *) Table[Sum[If[n > 2*k*(k-1), 1, 0], {k, Divisors[n]}], {n, 1, 100}] (* Vaclav Kotesovec, Oct 22 2024 *)
-
PARI
seq(N, d)=my(x='x+O('x^N)); Vec(sum(k=1, N, x^(k*(d*k-d+2)/2)/(1-x^k))); seq(100, 4) \\ Joerg Arndt, May 05 2020
Formula
The g.f. for "consecutive parts that differ by d" is Sum_{k>=1} x^(k*(d*k-d+2)/2) / (1-x^k); cf. A117277. - Joerg Arndt, Nov 30 2020