A334463 a(n) is the sum of all parts of all partitions of n into consecutive parts that differ by 3.
1, 2, 3, 4, 10, 6, 14, 8, 18, 10, 22, 24, 26, 14, 45, 16, 34, 36, 38, 20, 63, 44, 46, 48, 50, 52, 81, 28, 58, 90, 62, 32, 99, 68, 105, 72, 74, 76, 117, 80, 82, 126, 86, 44, 180, 92, 94, 96, 98, 150, 204, 52, 106, 162, 165, 56, 228, 116, 118, 180, 122, 124, 252, 64, 195, 198, 134, 68, 276, 280, 142, 144
Offset: 1
Keywords
Examples
For n = 21 there are three partitions of 21 into consecutive parts that differ by 3, including 21 as a valid partition. They are [21], [12, 9] and [10, 7, 4]. The sum of the parts is [21] + [12 + 9] + [10 + 7 + 4] = 63, the same as 3*21 = 63, since there are three of these partitions of 21, so a(21) = 63.
Crossrefs
Formula
a(n) = n*A117277(n).
Comments