cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334466 Square array read by antidiagonals upwards: T(n,k) is the total number of parts in all partitions of n into consecutive parts that differ by k, with n >= 1, k >= 0.

Original entry on oeis.org

1, 3, 1, 4, 1, 1, 7, 3, 1, 1, 6, 1, 1, 1, 1, 12, 3, 3, 1, 1, 1, 8, 4, 1, 1, 1, 1, 1, 15, 3, 3, 3, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 18, 6, 3, 3, 3, 1, 1, 1, 1, 1, 12, 5, 4, 1, 1, 1, 1, 1, 1, 1, 1, 28, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 14, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 24, 3, 6, 3, 3, 3, 3, 1
Offset: 1

Views

Author

Omar E. Pol, May 01 2020

Keywords

Comments

The one-part partition n = n is included in the count.
The column k is related to (k+2)-gonal numbers, assuming that 2-gonals are the nonnegative numbers, 3-gonals are the triangular numbers, 4-gonals are the squares, 5-gonals are the pentagonal numbers, and so on.
Note that the number of parts for T(n,0) = A000203(n), equaling the sum of the divisors of n.
For fixed k>0, Sum_{j=1..n} T(j,k) ~ 2^(3/2) * n^(3/2) / (3*sqrt(k)). - Vaclav Kotesovec, Oct 23 2024

Examples

			Square array starts:
   n\k|   0  1  2  3  4  5  6  7  8  9 10 11 12
   ---+---------------------------------------------
   1  |   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   2  |   3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   3  |   4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   4  |   7, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   5  |   6, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   6  |  12, 4, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, ...
   7  |   8, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, ...
   8  |  15, 1, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, ...
   9  |  13, 6, 4, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, ...
  10  |  18, 5. 3. 1. 3. 1, 3, 1, 3, 1, 1, 1, 1, ...
  11  |  12, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, ...
  12  |  28, 4, 6, 4, 3, 1, 3, 1, 3, 1, 3, 1, 1, ...
  ...
For n = 9 we have that:
For k = 0 the partitions of 9 into consecutive parts that differ by 0 (or simply: the partitions of 9 into equal parts) are [9], [3,3,3], [1,1,1,1,1,1,1,1,1]. In total there are 13 parts, so T(9,0) = 13.
For k = 1 the partitions of 9 into consecutive parts that differ by 1 (or simply: the partitions of 9 into consecutive parts) are [9], [5,4], [4,3,2]. In total there are six parts, so T(9,1) = 6.
For k = 2 the partitions of 9 into consecutive parts that differ by 2 are [9], [5, 3, 1]. In total there are four parts, so T(9,2) = 4.
		

Crossrefs

Columns k: A000203 (k=0), A204217 (k=1), A066839 (k=2), A330889 (k=3), A334464 (k=4), A334732 (k=5), A334949 (k=6), A377300 (k=7), A377301 (k=8).
Triangles whose row sums give the column k: A127093 (k=0), A285914 (k=1), A330466 (k=2) (conjectured), A330888 (k=3), A334462 (k=4), A334540 (k=5), A339947 (k=6).
Sequences of number of partitions related to column k: A000005 (k=0), A001227 (k=1), A038548 (k=2), A117277 (k=3), A334461 (k=4), A334541 (k=5), A334948 (k=6).
Tables of partitions related to column k: A010766 (k=0), A286001 (k=1), A332266 (k=2), A334945 (k=3), A334618 (k=4).
Polygonal numbers related to column k: A001477 (k=0), A000217 (k=1), A000290 (k=2), A000326 (k=3), A000384 (k=4), A000566 (k=5), A000567 (k=6).

Programs

  • Mathematica
    nmax = 14;
    col[k_] := col[k] = CoefficientList[Sum[n x^(n(k n - k + 2)/2)/(1 - x^n), {n, 1, nmax}] + O[x]^(nmax+1), x];
    T[n_, k_] := col[k][[n+1]];
    Table[T[n-k, k], {n, 1, nmax}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Nov 30 2020 *)

Formula

The g.f. for column k is Sum_{n>=1} n*x^(n*(k*n-k+2)/2)/(1-x^n). (For proof, see A330889. - N. J. A. Sloane, Nov 21 2020)