cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334467 Square array read by antidiagonals upwards: T(n,k) is the sum of all parts of all partitions of n into consecutive parts that differ by k, with n >= 1, k >= 0.

Original entry on oeis.org

1, 4, 1, 6, 2, 1, 12, 6, 2, 1, 10, 4, 3, 2, 1, 24, 10, 8, 3, 2, 1, 14, 12, 5, 4, 3, 2, 1, 32, 14, 12, 10, 4, 3, 2, 1, 27, 8, 7, 6, 5, 4, 3, 2, 1, 40, 27, 16, 14, 12, 5, 4, 3, 2, 1, 22, 20, 18, 8, 7, 6, 5, 4, 3, 2, 1, 72, 22, 20, 18, 16, 14, 6, 5, 4, 3, 2, 1, 26, 24, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Omar E. Pol, May 05 2020

Keywords

Examples

			Array begins:
     k  0   1   2   3   4   5   6   7   8   9  10
   n +------------------------------------------------
   1 |  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, ...
   2 |  4,  2,  2,  2,  2,  2,  2,  2,  2,  2,  2, ...
   3 |  6,  6,  3,  3,  3,  3,  3,  3,  3,  3,  3, ...
   4 | 12,  4,  8,  4,  4,  4,  4,  4,  4,  4,  4, ...
   5 | 10, 10,  5, 10,  5,  5,  5,  5,  5,  5,  5, ...
   6 | 24, 12, 12,  6, 12,  6,  6,  6,  6,  6,  6, ...
   7 | 14, 14,  7, 14,  7, 14,  7,  7,  7,  7,  7, ...
   8 | 32,  8, 16,  8, 16,  8, 16,  8,  8,  8,  8, ...
   9 | 27, 27, 18, 18,  9, 18,  9, 18,  9,  9,  9, ...
  10 | 40, 20, 20, 10, 20, 20, 20, 10, 20, 10, 10, ...
...
		

Crossrefs

Columns k: A038040 (k=0), A245579 (k=1), A060872 (k=2), A334463 (k=3), A327262 (k=4), A334733 (k=5), A334953 (k=6).
Every diagonal starting with 1 gives A000027.
Sequences of number of parts related to column k: A000203 (k=0), A204217 (k=1), A066839 (k=2) (conjectured), A330889 (k=3), A334464 (k=4), A334732 (k=5), A334949 (k=6).
Sequences of number of partitions related to column k: A000005 (k=0), A001227 (k=1), A038548 (k=2), A117277 (k=3), A334461 (k=4), A334541 (k=5), A334948 (k=6).
Polygonal numbers related to column k: A001477 (k=0), A000217 (k=1), A000290 (k=2), A000326 (k=3), A000384 (k=4), A000566 (k=5), A000567 (k=6).

Programs

  • Mathematica
    nmax = 13;
    col[k_] := col[k] = CoefficientList[Sum[x^(n(k n - k + 2)/2 - 1)/(1 - x^n), {n, 1, nmax}] + O[x]^nmax, x];
    T[n_, k_] := n col[k][[n]];
    Table[T[n-k, k], {n, 1, nmax}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Nov 30 2020 *)

Formula

T(n,k) = n*A323345(n,k).