This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334479 #15 Jun 27 2020 16:01:40 %S A334479 1,0,0,9,1,3,4,5,0,8,6,3,8,4,7,4,4,7,8,0,7,1,1,3,7,5,3,9,5,8,9,2,0,5, %T A334479 5,8,8,1,7,4,5,6,4,7,8,5,2,9,5,2,5,5,9,9,3,0,7,2,3,6,2,0,8,1,4,8,7,9, %U A334479 6,2,8,3,5,9,1,6,3,6,0,3,2,1,1,9,3,2,6,6,4,3,5,2,6,4,0,4,9,6,5,9,7,5,6,1,6 %N A334479 Decimal expansion of Product_{k>=1} (1 + 1/A007528(k)^3). %C A334479 In general, for s > 0, Product_{k>=1} (1 + 1/A007528(k)^(2*s+1)) / (1 - 1/A007528(k)^(2*s+1)) = (1 - 1/2^(2*s + 1)) * (3^(2*s + 1) - 1) * (2*s)! * zeta(2*s + 1) / (sqrt(3) * A002114(s) * Pi^(2*s + 1)). %C A334479 For s > 1, Product_{k>=1} (1 + 1/A007528(k)^s) / (1 - 1/A007528(k)^s) = (2^s - 1) * (3^s - 1) * zeta(s) / (zeta(s, 1/6) - zeta(s, 5/6)). %C A334479 For s > 1, Product_{k>=1} (1 + 1/A002476(k)^s) * (1 + 1/A007528(k)^s) = 6^s * zeta(s) / ((2^s + 1) * (3^s + 1) * zeta(2*s)). %F A334479 A334479 / A334480 = 91*sqrt(3)*zeta(3)/(6*Pi^3). %F A334479 A334477 * A334479 = 810*zeta(3)/Pi^6. %e A334479 1.0091345086384744780711375395892055881745647852... %Y A334479 Cf. A007528, A175646, A334424, A334426, A334480, A334482. %K A334479 nonn,cons %O A334479 1,4 %A A334479 _Vaclav Kotesovec_, May 02 2020 %E A334479 More digits from _Vaclav Kotesovec_, Jun 27 2020