This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334492 #17 Jul 25 2021 03:36:43 %S A334492 0,1,1,0,-1,-1,0,3,4,4,3,2,2,3,2,3,3,2,1,1,2,-1,0,0,-1,-2,-2,-1,-3,-2, %T A334492 -2,-3,-4,-4,-3,-2,-1,-1,-2,-3,-3,-2,1,2,2,1,0,0,1,8,9,9,8,7,7,8,11, %U A334492 12,12,11,10,10,11,10,11,11,10,9,9,10,7,8,8,7,6,6 %N A334492 a(n) is the "real" part of f(n) = Sum_{k>=0, d_k>0} (1+w)^(d_k-1) * (3+w)^k where Sum_{k>=0} d_k * 7^k is the base 7 representation of n and w = -1/2 + sqrt(-3)/2 is a primitive cube root of unity; sequence A334493 gives "w" parts. %C A334492 For any Eisenstein integer z = u + v*w (where u and v are integers), we call u the "real" part of z and v the "w" part of z. %C A334492 This sequence has connections with A316657; here we work with Eisenstein integers, there with Gaussian integers. %C A334492 It appears that f defines a bijection from the nonnegative integers to the Eisenstein integers. %H A334492 Rémy Sigrist, <a href="/A334492/b334492.txt">Table of n, a(n) for n = 0..16806</a> %H A334492 Rémy Sigrist, <a href="/A334492/a334492.png">Colored representation of f(n) for n = 0..7^7-1 in a hexagonal lattice</a> (where the hue is function of n) %H A334492 Rémy Sigrist, <a href="/A334492/a334492.gp.txt">PARI program for A334492</a> %H A334492 Wikipedia, <a href="https://en.wikipedia.org/wiki/Eisenstein_integer">Eisenstein integer</a> %e A334492 The following diagram depicts f(n) for n = 0..13: %e A334492 "w" axis %e A334492 \ %e A334492 . . . . . . . . %e A334492 \ 10 9 %e A334492 \ %e A334492 . . . . . . . . %e A334492 3 \ 2 11 7 8 %e A334492 \ %e A334492 ._____._____._____._____._____._____._____. "real" axis %e A334492 4 0 \ 1 12 13 %e A334492 \ %e A334492 . . . . . . . . %e A334492 5 6 \ %e A334492 - f(9) = 4 + 2*w, hence a(9) = 4. %o A334492 (PARI) See Links section. %Y A334492 Cf. A307013 (equivalent coordinate for a counterclockwise spiral), A316657, A334493. %K A334492 sign,base,look %O A334492 0,8 %A A334492 _Rémy Sigrist_, May 03 2020