This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334520 #15 Oct 22 2024 05:36:32 %S A334520 2,7,19,37,61,127,271,331,397,547,631,919,1657,1801,1951,2269,2437, %T A334520 2791,3169,3571,4219,4447,5167,5419,6211,7057,7351,8269,9241,10267, %U A334520 11719,12097,13267,13669,16651,19441,19927,22447,23497,24571,25117,26227 %N A334520 Primes that are the sum of two cubes. %C A334520 Union of 2 and A002407. Believed to be infinite. %H A334520 Chai Wah Wu, <a href="/A334520/b334520.txt">Table of n, a(n) for n = 1..10000</a> %H A334520 Andrew Sutherland, <a href="https://drive.google.com/file/d/1qzD__dviONTqHQH7DBFmsQ0MdCa7ePRg/view">Sums of three cubes</a>, Slides of a talk given May 07 2020 on the Number Theory Web. %H A334520 Fernando Rodriguez Villegas and Don Zagier, <a href="http://people.mpim-bonn.mpg.de/zagier/files/mpim/95-61/fulltext.pdf">Which primes are sums of two cubes?</a>, CMS Conference Proceedings 15 (1995), pp. 295-306. %e A334520 2 = 1^3 + 1^3. %e A334520 7 = 2^3 + (-1)^3. %e A334520 19 = 3^3 + (-2)^3. %t A334520 Union[{2},Select[Table[3n^2+3n+1,{n,93}],PrimeQ]] (* _Paul F. Marrero Romero_, Oct 21 2024 *) %Y A334520 Cf. A002407. %K A334520 nonn %O A334520 1,1 %A A334520 _N. J. A. Sloane_, May 07 2020