This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334524 #27 Jul 09 2020 11:58:46 %S A334524 1,5,9,13,17,29,33,37,41,45,65,69,73,77,81,101,105,109,113,117,153, %T A334524 157,161,165,169,181,185,189,193,197,233,237,241,245,249,261,273,277, %U A334524 281,285,321,325,329,333,337,373,377,381,385,397,417,421,425,429,433,445 %N A334524 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w^2 + 5xy = 0. %C A334524 If n is squarefree and not divisible by 5, a(n) = a(n-1)+4. - _Robert Israel_, Jun 29 2020 %H A334524 Brandon Crofts, <a href="/A334524/b334524.txt">Table of n, a(n) for n = 0..20000</a> (first 10001 terms from Robert Israel) %H A334524 Brandon Crofts, <a href="/A334524/a334524.txt">Mathematica code for 334524</a> %p A334524 df:= proc(n) local t,s,m0,m; %p A334524 if n mod 5 = 0 then %p A334524 m:= n/5; %p A334524 t:= 4*nops(select(s -> s < n and s > m, numtheory:-divisors(5*m^2))) %p A334524 else t:= 0 %p A334524 fi; %p A334524 m0:= mul(`if`(s[1]=5, s[1]^ceil((s[2]-1)/2), %p A334524 s[1]^ceil(s[2]/2)),s=ifactors(n)[2]); %p A334524 t + 4 + 8*floor(n/m0/5); %p A334524 end proc: %p A334524 df(0):= 1: %p A334524 ListTools:-PartialSums(map(df,[$0..100])); # _Robert Israel_, Jun 29 2020 %Y A334524 Cf. A211423. %K A334524 nonn %O A334524 0,2 %A A334524 _Brandon Crofts_, Jun 15 2020