This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334525 #18 Jul 01 2020 20:24:10 %S A334525 1,5,9,13,17,21,25,37,41,45,49,53,57,61,81,85,89,93,97,101,105,125, %T A334525 129,133,137,141,145,149,185,189,193,197,201,205,209,229,233,237,241, %U A334525 245,249,253,297,301,305,309,313,317,321,333,337,341,345,349,353,357,393,397 %N A334525 Number of ordered triples (w,x,y) with all terms in {-n,...,0,...,n} and w^2 + 7xy = 0. %C A334525 If n is squarefree and not divisible by 7, a(n) = a(n-1)+4. - _Robert Israel_, Jul 01 2020 %H A334525 Brandon Crofts, <a href="/A334525/b334525.txt">Table of n, a(n) for n = 0..20000</a> %H A334525 Brandon Crofts, <a href="/A334525/a334525.txt">Mathematica code for A334525</a> %p A334525 df:= proc(n) local t, s, m0, m; %p A334525 if n mod 7 = 0 then %p A334525 m:= n/7; %p A334525 t:= 4*nops(select(s -> s < n and s > m, numtheory:-divisors(7*m^2))) %p A334525 else t:= 0 %p A334525 fi; %p A334525 m0:= mul(`if`(s[1]=7, s[1]^ceil((s[2]-1)/2), %p A334525 s[1]^ceil(s[2]/2)), s=ifactors(n)[2]); %p A334525 t + 4 + 8*floor(n/m0/7); %p A334525 end proc: %p A334525 df(0):= 1: %p A334525 ListTools:-PartialSums(map(df, [$0..100])); # _Robert Israel_, Jul 01 2020 %Y A334525 Cf. A211423. %K A334525 nonn %O A334525 0,2 %A A334525 _Brandon Crofts_, Jun 15 2020