This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334528 #8 May 06 2020 01:46:43 %S A334528 4,666,28182,45054,51315,82628,239932,454454,864468,2594952,2976792, %T A334528 3189813,3355533,4172714,4890984,5319135,5367635,5777775,7149417, %U A334528 7247427,8068608,8079708,8100018,8280828,8627268,9227229,9423249,21699612,22544522,24166142,27677672 %N A334528 Palindromic numbers that are also Niven numbers and Smith numbers. %C A334528 Witno (2014) proved that this sequence is infinite. %H A334528 Amiram Eldar, <a href="/A334528/b334528.txt">Table of n, a(n) for n = 1..512</a> %H A334528 Amin Witno, <a href="https://www.emis.de/journals/INTEGERS/papers/o66/o66.Abstract.html">Smith Numbers With Extra Digital Features</a>, Integers, Vol. 14 (2014), Article A66. %e A334528 666 is a term since it is palindromic, a Niven number (6 + 6 + 6 = 18 is a divisor of 666) and a Smith number (666 = 2 * 3 * 3 * 37 and 6 + 6 + 6 = 2 + 3 + 3 + 3 + 7). %t A334528 digSum[n_] := Plus @@ IntegerDigits[n]; palNivenSmithQ[n_] := PalindromeQ[n] && Divisible[n, (ds = digSum[n])] && CompositeQ[n] && Plus @@ (Last@# * digSum[First@#] & /@ FactorInteger[n]) == ds; Select[Range[10^5], palNivenSmithQ] %Y A334528 Intersection of A002113, A005349 and A006753. %Y A334528 Intersection of any two of the sequences A082232, A098834 and A334527. %K A334528 nonn,base %O A334528 1,1 %A A334528 _Amiram Eldar_, May 05 2020