A334529 Numbers that are both binary palindromes and binary Niven numbers.
1, 21, 273, 4161, 22517, 28347, 65793, 69905, 81913, 87381, 106483, 109483, 121143, 292721, 299593, 317273, 319449, 350933, 354101, 368589, 378653, 421811, 470951, 479831, 1049601, 1135953, 1171313, 1172721, 1208009, 1257113, 1269593, 1295481, 1332549, 1371877
Offset: 1
Examples
21 is a term since its binary representation, 10101, is palindromic, and 1 + 0 + 1 + 0 + 1 = 3 is a divisor of 21.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[10^6], PalindromeQ[(d = IntegerDigits[#, 2])] && Divisible[#, Plus @@ d] &]
-
Python
def ok(n): b = bin(n)[2:]; return b==b[::-1] and n%sum(map(int, b)) == 0 def aupto(nn): return [m for m in range(1, nn+1) if ok(m)] print(aupto(1371877)) # Michael S. Branicky, Jan 21 2021