This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334534 #24 Jul 17 2021 04:29:28 %S A334534 25,28,128,225,293,678,725,742,749,4225,4421,6225,8926,72225,617371, %T A334534 1985525,3679518,4381824,6816771,8572645,9721317,43872768,54639413, %U A334534 758873243,5895396725,7796276839,8881527332,9458237492,9594769255,9949621217,25214163187,31987487294 %N A334534 Numbers k such that (k-p)*(k+p) contains k as a substring, where p > 0 and p = A007954(k) is the product of digits of k. %H A334534 Giovanni Resta, <a href="/A334534/b334534.txt">Table of n, a(n) for n = 1..37</a> (terms < 3*10^12) %e A334534 25 is a term as p = 2*5 = 10 and (25-10)*(25+10) = 525 which contains '25' as a substring. %e A334534 8926 is a term as p = 8*9*2*6 = 864 and (8926-864)*(8926+864) = 78926980 which contains '8926' as a substring. %o A334534 (PARI) isokp(dx, d) = {if (!#setintersect(Set(dx), Set(d)), return (0)); for (i=1, #dx - #d + 1, if (vector(#d, k, dx[k+i-1]) == d, return(1)););} %o A334534 isokd(x, d, n) = {if (x==n, return (1)); my(dx = digits(x)); if (#dx < #d, return (0)); isokp(dx, d);} %o A334534 isok(n) = {my(d = digits(n), p = vecprod(d)); if (p>0, isokd((n-p)*(n+p), d, n));} \\ _Michel Marcus_, May 07 2020 %Y A334534 Cf. A007954, A063108, A028842. %K A334534 nonn,base %O A334534 1,1 %A A334534 _Scott R. Shannon_, May 05 2020 %E A334534 More terms from _Giovanni Resta_, May 07 2020