This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334535 #70 Jun 30 2020 21:15:13 %S A334535 1,2,3,5,8,19,27,24,45,69,72,51,27,24,45,69,72,51,27,30,57,81,78,51, %T A334535 75,126,153,333,486,459,891,1350,1377,945,486,459,891,1350,1377,945, %U A334535 486,459,891,1350,1377,945,486,459,891,1350,1377,2781,4158,4131,2727,1350 %N A334535 a(1) = 1, a(2) = 2, and for n > 2, a(n) = 2*a(a(n-i))+a(n-1)-a(n-2) where i >= 2 is the smallest number that satisfies a(n-i) < n. %C A334535 The sequence is piecewise-periodic. %H A334535 Smirnov Vladimir, <a href="/A334535/b334535.txt">Table of n, a(n) for n = 1..3000</a> %F A334535 a(n) = 2*a(a(n-i))+a(n-1)-a(n-2) where i = 2, unless a(n-i) >= n, in which case i = 3,4,5,6... %e A334535 For n = 6, a(n-i) = a(6-2) = a(4) = 5; a(6) = 2*a(5)+a(5)-a(4) = 19. %e A334535 For n = 7, a(n-i) = a(7-2) = a(5) = 8; but a(n-i)>n, then a(n-i) = a(7-3) = a(4) = 5; a(7) = 2*a(5)+a(6)-a(5) = 27. %e A334535 For n = 9, a(n-i) = a(9-2) = a(7) = 27; but a(n-i)>n, then a(n-i) = a(9-3) = a(6) = 19; but a(n-i)>n, then a(n-i) = a(9-4) = a(5) = 8; a(9) = 2*a(8)+a(8)-a(7) = 45. %e A334535 Simplified calculation option for n = 31, a(n-i) = a(31-2) = a(29) = 486; but a(n-i)> n, visually find in the sequence such a(n) that is located closest to the end of the sequence and less than n: this is a(20) = 30, then a(n-i) = 30; a(31) = 2 * a(30) + a(30)- a(29) = 891. %p A334535 a[1] := 1: %p A334535 a[2] := 2: %p A334535 for n from 3 to 100 do %p A334535 i := 2; %p A334535 while a[n-i] >= n do i := i+1; %p A334535 end do: %p A334535 a[n] := 2*a[a[n-i]]+a[n-1]-a[n-2] %p A334535 end do: %p A334535 seq(a[n], n=1..100); %t A334535 a[1]=1;a[2]=2;For[n=3,n<=100,n++,i=2;While[a[n-i]>=n,i++];a[n]= 2*a[a[n-i]]+a[n-1]-a[n-2]];Table[a[n],{n,1,100}] %o A334535 (C) int main() { %o A334535 int a[100]; %o A334535 a[1]=1; %o A334535 a[2]=2; %o A334535 printf("%d\n", 1); %o A334535 printf("%d\n", 2); %o A334535 for (int n=3; n<=99; n++) %o A334535 {int i=2; %o A334535 while (a[n-i]>=n) {i++;} %o A334535 a[n]=2*a[a[n-i]]+a[n-1]-a[n-2]; %o A334535 printf("%d\n", a[n]);} %o A334535 return 0; } %o A334535 (PARI) lista(nn) = {my(va = vector(nn)); va[1] = 1; va[2] = 2; for (n=3, nn, my(i = 2); while(va[n-i] >= n, i++); va[n] = 2*va[va[n-i]]+va[n-1]-va[n-2];); va;} \\ _Michel Marcus_, May 09 2020 %o A334535 (Python) %o A334535 from functools import lru_cache %o A334535 @lru_cache(maxsize=None) %o A334535 def A334535(n): %o A334535 if n <= 2: %o A334535 return n %o A334535 i, a, b = 2, A334535(n-1), A334535(n-2) %o A334535 q = b %o A334535 while q >= n: %o A334535 i += 1 %o A334535 q = A334535(n-i) %o A334535 return 2*A334535(q)+a-b # _Chai Wah Wu_, Jun 30 2020 %Y A334535 Cf. A030118. %K A334535 nonn %O A334535 1,2 %A A334535 _Smirnov Vladimir_, May 05 2020