This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334550 #10 Jan 11 2021 00:14:32 %S A334550 1,1,2,1,2,3,1,5,5,5,1,5,12,9,7,1,9,23,29,17,11,1,9,39,62,57,28,15,1, %T A334550 14,63,147,154,110,47,22,1,14,102,278,409,329,194,73,30,1,20,150,568, %U A334550 991,1023,664,335,114,42,1,20,221,1020,2334,2844,2267,1243,549,170,56 %N A334550 Triangle read by rows: T(n,k) is the number of binary matrices with n ones, k columns and no zero rows or columns, up to permutations of rows and columns. %C A334550 T(n,k) is also the number of non-isomorphic set multipartitions (multisets of sets) of weight n with k parts. %H A334550 Andrew Howroyd, <a href="/A334550/b334550.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50) %e A334550 Triangle begins: %e A334550 1; %e A334550 1, 2; %e A334550 1, 2, 3; %e A334550 1, 5, 5, 5; %e A334550 1, 5, 12, 9, 7; %e A334550 1, 9, 23, 29, 17, 11; %e A334550 1, 9, 39, 62, 57, 28, 15; %e A334550 1, 14, 63, 147, 154, 110, 47, 22; %e A334550 ... %e A334550 The T(4,3) = 5 matrices are: %e A334550 [1 0 0] [1 0 0] [1 1 0] [1 1 1] [1 1 0] %e A334550 [1 0 0] [1 0 0] [1 0 0] [1 0 0] [1 0 1] %e A334550 [0 1 0] [0 1 1] [0 0 1] %e A334550 [0 0 1] %e A334550 The T(4,3) = 5 the set multipartitions are: %e A334550 {{1,2}, {3}, {4}}, %e A334550 {{1,2}, {3}, {3}}, %e A334550 {{1,2}, {1}, {3}}, %e A334550 {{1,2}, {1}, {1}}, %e A334550 {{1,2}, {1}, {2}}. %o A334550 (PARI) \\ See A321609 for definition of M. %o A334550 T(n, k)={M(k, n, n) - M(k-1, n, n)} %o A334550 for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print) %o A334550 (PARI) \\ Faster version. %o A334550 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A334550 K(q, t, n)={prod(j=1, #q, (1+x^lcm(t, q[j]) + O(x*x^n))^gcd(t, q[j]))} %o A334550 G(m,n)={my(s=0); forpart(q=m, s+=permcount(q)*exp(sum(t=1, n, (K(q, t, n)-1)/t) + O(x*x^n))); s/m!} %o A334550 A(n,m=n)={my(p=sum(k=0, m, G(k,n)*y^k)*(1-y)); matrix(n, m, n, k, polcoef(polcoef(p, n, x), k, y))} %o A334550 { my(T=A(10)); for(n=1, #T, print(T[n,1..n])) } %Y A334550 Row sums are A049311. %Y A334550 Main diagonal is A000041. %Y A334550 Cf. A317533, A321609. %K A334550 nonn,tabl %O A334550 1,3 %A A334550 _Andrew Howroyd_, Jul 03 2020