This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334552 #20 Dec 20 2023 16:30:00 %S A334552 1,1,1,1,4,1,1,8,8,1,1,12,25,12,1,1,16,50,50,16,1,1,20,83,120,83,20,1, %T A334552 1,24,124,230,230,124,24,1,1,28,173,388,497,388,173,28,1,1,32,230,602, %U A334552 932,932,602,230,32,1,1,36,295,880,1591,1924,1591,880,295,36,1 %N A334552 Array read by antidiagonals: T(m,n) is the number of fixed polyominoes that have a width of m and height of n and m + n - 1 cells. %C A334552 A polyomino with a width of m and height of n must have at least m + n - 1 cells. %H A334552 Andrew Howroyd, <a href="/A334552/b334552.txt">Table of n, a(n) for n = 1..1275</a> %F A334552 T(m,n) = 2*binomial(m+n-2, m-1) + 2*(m+n-4) + (m-2)*(n-2)*(m+n-5) + 2*Sum_{i=1..m-2} Sum_{j=1..n-2} ((m-2-i)*(n-2-j)+2)*binomial(i+j,i) for m > 1, n > 1. %F A334552 T(m,n) = max(1, 8*binomial(m+n-2, m-1) - 3*m*n + 2*m + 2*n - 8). - _Peter J. Taylor_, Dec 15 2020 %e A334552 Array begins: %e A334552 ===================================================== %e A334552 m\n | 1 2 3 4 5 6 7 8 9 %e A334552 ----+------------------------------------------------ %e A334552 1 | 1 1 1 1 1 1 1 1 1 ... %e A334552 2 | 1 4 8 12 16 20 24 28 32 ... %e A334552 3 | 1 8 25 50 83 124 173 230 295 ... %e A334552 4 | 1 12 50 120 230 388 602 880 1230 ... %e A334552 5 | 1 16 83 230 497 932 1591 2538 3845 ... %e A334552 6 | 1 20 124 388 932 1924 3588 6212 10156 ... %e A334552 7 | 1 24 173 602 1591 3588 7265 13582 23859 ... %e A334552 8 | 1 28 230 880 2538 6212 13582 27288 51290 ... %e A334552 9 | 1 32 295 1230 3845 10156 23859 51290 102745 ... %e A334552 ... %t A334552 A334552[m_,n_]:=Max[1,8Binomial[m+n-2,m-1]-3m*n+2m+2n-8]; %t A334552 Table[A334552[m-n+1,n],{m,15},{n,m}] (* _Paolo Xausa_, Dec 20 2023 *) %o A334552 (PARI) T(m, n)={if(m==1||n==1, 1, 8*binomial(m+n-2, m-1) - 3*m*n + 2*m + 2*n - 8)} \\ _Andrew Howroyd_, Dec 30 2020, after _Peter J. Taylor_ %Y A334552 Columns 2..3 are A008574(n-1), A164754(n+1). %Y A334552 Main diagonal is A334551. %Y A334552 Cf. A292357. %K A334552 nonn,tabl %O A334552 1,5 %A A334552 _Andrew Howroyd_, Jun 06 2020