cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334572 Let x(n, k) be the exponent of prime(k) in the factorization of n, then a(n) = Max_{k} abs(x(n,k)- x(n-1,k)).

This page as a plain text file.
%I A334572 #43 Mar 28 2025 08:00:24
%S A334572 1,1,2,2,1,1,3,3,2,1,2,2,1,1,4,4,2,2,2,2,1,1,3,3,2,3,3,2,1,1,5,5,1,1,
%T A334572 2,2,1,1,3,3,1,1,2,2,2,1,4,4,2,2,2,2,3,3,3,3,1,1,2,2,1,2,6,6,1,1,2,2,
%U A334572 1,1,3,3,1,2,2,2,1,1,4,4,4,1,2,2,1,1,3,3,2
%N A334572 Let x(n, k) be the exponent of prime(k) in the factorization of n, then a(n) = Max_{k} abs(x(n,k)- x(n-1,k)).
%C A334572 a(n) = d_infinite(n, n-1) as defined in Kolossváry & Kolossváry link.
%H A334572 Amiram Eldar, <a href="/A334572/b334572.txt">Table of n, a(n) for n = 2..10000</a>
%H A334572 István B. Kolossváry and István T. Kolossváry, <a href="https://doi.org/10.1016/j.jnt.2021.09.010">Distance between natural numbers based on their prime signature</a>, Journal of Number Theory, Vol. 234 (2022), pp. 120-139; <a href="https://arxiv.org/abs/2005.02027">arXiv preprint</a>, arXiv:2005.02027 [math.NT], 2020-2021.
%H A334572 Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_distance">Chebyshev distance</a>.
%F A334572 a(n) = max(A051903(n-1), A051903(n)). - _Pontus von Brömssen_, May 07 2020
%F A334572 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=2..m} a(k) = 2.2883695... (A334574). - _Amiram Eldar_, Jan 05 2024
%F A334572 a(n) = A051903(A002378(n-1)). - _Amiram Eldar_, Mar 28 2025
%e A334572 The "coordinates" of the prime factorization are
%e A334572   0,0,0,0, ... for n=1,
%e A334572   1,0,0,0, ... for n=2,
%e A334572   0,1,0,0, ... for n=3,
%e A334572   2,0,0,0, ... for n=4,
%e A334572   0,0,1,0, ... for n=5,
%e A334572   1,1,0,0, ... for n=6;
%e A334572 so the absolute differences are
%e A334572   1,0,0,0, ... so a(2)=1,
%e A334572   1,1,0,0, ... so a(3)=1,
%e A334572   2,1,0,0, ... so a(4)=2,
%e A334572   2,0,1,0, ... so a(5)=2,
%e A334572   1,1,1,0, ... so a(6)=1.
%p A334572 f:= n-> add(i[2]*x^i[1], i=ifactors(n)[2]):
%p A334572 a:= n-> max(map(abs, {coeffs(f(n)-f(n-1))})):
%p A334572 seq(a(n), n=2..120);  # _Alois P. Heinz_, May 06 2020
%t A334572 Block[{f}, f[n_] := If[n == 1, {0}, Function[g, ReplacePart[Table[0, {PrimePi[g[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, g]]@ FactorInteger@ n]; Array[Function[{a, b, m}, Max@ Abs[Subtract @@ #] &@ Map[PadRight[#, m] &, {a, b}]] @@ {#1, #2, Max@ Map[Length, {#1, #2}]} & @@ {f[# - 1], f@ #} &, 106, 2]] (* _Michael De Vlieger_, May 06 2020 *)
%t A334572 (* Second program: *)
%t A334572 f[n_] := Sum[{p, e} = pe; e x^p, {pe, FactorInteger[n]}];
%t A334572 a[n_] := CoefficientList[f[n]-f[n-1], x] // Abs // Max;
%t A334572 a /@ Range[2, 90] (* _Jean-François Alcover_, Nov 16 2020, after _Alois P. Heinz_ *)
%t A334572 Max @@@ Partition[Join[{0}, Table[Max[FactorInteger[n][[;; , 2]]], {n, 2, 100}]], 2, 1] (* _Amiram Eldar_, Jan 05 2024 *)
%o A334572 (PARI) a(n) = {my(f=factor(n/(n-1))[,2]~); vecmax(apply(x->abs(x), f));}
%o A334572 (PARI) A051903(n)=vecmax(factor(n)[, 2])
%o A334572 a(n)=if(n<4, return(1)); max(A051903(n-1),A051903(n)) \\ _Charles R Greathouse IV_, Jan 30 2022
%Y A334572 Cf. A002378, A051903, A067255, A124010, A176166, A334573 (partial sums), A334574.
%K A334572 nonn
%O A334572 2,3
%A A334572 _Michel Marcus_, May 06 2020