This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334577 #16 May 09 2020 02:31:32 %S A334577 0,0,0,1,2,2,1,0,0,0,0,1,1,1,2,3,4,4,4,5,6,6,5,4,3,3,3,2,2,2,1,0,0,0, %T A334577 0,1,2,2,1,0,0,0,0,1,1,1,2,3,3,3,3,2,1,1,2,3,4,4,4,5,5,5,6,7,8,8,8,9, %U A334577 10,10,9,8,8,8,8,9,9,9,10,11,12,12,12,13 %N A334577 a(n) is the Y-coordinate of the n-th point of the space filling curve P defined in Comments section; sequence A334576 gives X-coordinates. %C A334577 The space filling curve P corresponds to the midpoint curve of the alternate paperfolding curve and can be built as follows: %C A334577 - we define the family {P_k, k > 0}: %C A334577 - P_1 corresponds to the points (0, 0), (1, 0), (2, 0) and (2, 1), in that order: %C A334577 + %C A334577 | %C A334577 | %C A334577 +----+----+ %C A334577 O %C A334577 - for any k > 0, P_{n+1} is built from four copies of P_n as follows: %C A334577 + %C A334577 |A %C A334577 + | %C A334577 C| +----+ | %C A334577 A B| ---> |C B| |B C %C A334577 +-------+ + | +----+-+ %C A334577 O C| | C| %C A334577 A B| A| A B| %C A334577 +-------+ +-+-------+ %C A334577 O %C A334577 - the space filling curve P is the limit of P_k as k tends to infinity. %C A334577 We can also describe the space filling curve P by mean of an L-system (see Links section). %H A334577 Rémy Sigrist, <a href="/A334577/b334577.txt">Table of n, a(n) for n = 0..4095</a> %H A334577 Joerg Arndt, <a href="/A334576/a334576.pdf">L-system corresponding to P</a> %H A334577 Kevin Ryde, <a href="https://user42.tuxfamily.org/alternate/index.html">Iterations of the Alternate Paperfolding Curve</a> %H A334577 Rémy Sigrist, <a href="/A334577/a334577.gp.txt">PARI program for A334577</a> %H A334577 <a href="/index/Con#coordinates_2D_curves">Index entries for sequences related to coordinates of 2D curves</a> %F A334577 a(n+1) = (A020990(n) + A020990(n+1) - 1)/2 for any n >= 0. %e A334577 The first points of the space filling curve P are as follows: %e A334577 6| 20...21 %e A334577 | | | %e A334577 5| 19 22 %e A334577 | | | %e A334577 4| 16...17...18 23 %e A334577 | | | %e A334577 3| 15 26...25...24 %e A334577 | | | %e A334577 2| 4....5 14 27...28...29 %e A334577 | | | | | %e A334577 1| 3 6 13...12...11 30 %e A334577 | | | | | %e A334577 0| 0....1....2 7....8....9....10 31.. %e A334577 | %e A334577 ---+---------------------------------------- %e A334577 y/x| 0 1 2 3 4 5 6 7 %e A334577 - hence a(15) = a(24) = a(25) = a(26) = 3. %o A334577 (PARI) See Links section. %Y A334577 Cf. A020990, A334576. %K A334577 nonn %O A334577 0,5 %A A334577 _Rémy Sigrist_, May 06 2020