cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334596 Number of values in A334556 with binary length n.

Original entry on oeis.org

2, 0, 0, 2, 0, 2, 4, 2, 0, 8, 4, 8, 16, 8, 16, 32, 0, 32, 64, 32, 64, 128, 64, 128, 256, 128, 256, 512, 256, 512, 1024, 512, 0, 2048, 1024, 2048, 4096, 2048, 4096, 8192, 4096, 8192, 16384, 8192, 16384, 32768, 16384, 32768, 65536, 32768, 65536, 131072, 65536, 131072, 262144, 131072
Offset: 1

Views

Author

Peter Kagey, May 07 2020

Keywords

Comments

All nonzero values are powers of two.

Examples

			For n = 11, the a(11) = 4 XOR-triangles of side length 11 are:
  1 0 1 0 1 1 0 0 0 1 1, 1 0 1 1 1 0 0 1 0 1 1,
   1 1 1 1 0 1 0 0 1 0    1 1 0 0 1 0 1 1 1 0
    0 0 0 1 1 1 0 1 1      0 1 0 1 1 1 0 0 1
     0 0 1 0 0 1 1 0        1 1 1 0 0 1 0 1
      0 1 1 0 1 0 1          0 0 1 0 1 1 1
       1 0 1 1 1 1            0 1 1 1 0 0
        1 1 0 0 0              1 0 0 1 0
         0 1 0 0                1 0 1 1
          1 1 0                  1 1 0
           0 1                    0 1
            1                      1
and their reflections across a vertical line.
By reading the first rows in binary, these XOR-triangles correspond to A334556(20) = 1379, A334556(21) = 1483, A334556(22) = 1589, and A334556(23) = 1693 respectively.
		

Crossrefs

Programs

  • Mathematica
    coeff[i_, j_, n_] := Binomial[i, j] - If[j + i == n, 1, 0];
    A334596[1] = 2;
    A334596[n_] := (
       nullsp = NullSpace[
         Table[coeff[i, j, n - 1], {i, 0, n - 1}, {j, 0, n - 1}],
         Modulus -> 2];
       If[AnyTrue[nullsp, #[[1]] == 1 &], 2^(Length[nullsp] - 1), 0]
       );

Formula

Conjectured formula:
a(1) = 2,
a(n) = 0 if n = 2^k + 1 for some k, and
a(n) = 2^A008611(n-4) otherwise.

Extensions

More terms from Rémy Sigrist, May 08 2020