This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334616 #31 Jan 19 2022 21:28:15 %S A334616 2,23,5605504,768614338020786176, %T A334616 1772303994379887844373479205703254016, %U A334616 4388012152856549445746584486819723041078276071004502223505850368,746581580725934736852480760189481426040548499078234470565449222456544381939194522144498021170453413888 %N A334616 Number of 2-colorings of an n X n X n grid, up to rotational symmetry. %C A334616 The cycle index of the permutation group is given by: %C A334616 Even n: (1/24)*(s_1^n^3 + 8*s_1^n*s_3^((n^3-n)/3) + 6*s_2^(n^3/2) + 6*s_4^(n^3/4) + 3*s_2^(n^3/2)); %C A334616 Odd n: (1/24)*(s_1^n^3 + 8*s_1^n*s_3^((n^3-n)/3) + 6*s_1^n*s_2^((n^3-n)/2) + 6*s_1^n*s_4^((n^3-n)/4) + 3*s_1^n*s_2^((n^3-n)/2)). %H A334616 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cycle_index">Cycle index</a> %H A334616 Paul Oelkers, <a href="/A334616/a334616.jpg">Hand written notes and sketches</a> %F A334616 a(n) = (1/24)*(2^n^3 + 6*2^((n^3)/4) + 9*2^((n^3)/2) + 8*2^((n^3-n)/3+n)) for n even; %F A334616 a(n) = (1/24)*(2^n^3 + 6*2^(((n^3)-n)/4+n) + 9*2^(((n^3)-n)/2+n) + 8*2^(((n^3-n)/3)+n)) for n odd. %e A334616 a(2)=23 from: %e A334616 00 00 %e A334616 00 00 %e A334616 ------------------------------------------ %e A334616 10 00 %e A334616 00 00 %e A334616 ------------------------------------------ %e A334616 11 00 10 00 10 01 10 00 %e A334616 00 00 01 00 00 00 00 01 %e A334616 ------------------------------------------ %e A334616 11 00 11 00 01 10 %e A334616 10 00 00 10 10 00 %e A334616 ------------------------------------------ %e A334616 11 00 11 00 01 10 11 00 11 10 %e A334616 11 00 10 01 10 01 00 11 10 00 %e A334616 ------------------------------------------ %e A334616 00 11 00 11 10 01 %e A334616 01 11 11 01 01 11 %e A334616 ------------------------------------------ %e A334616 00 11 01 11 01 10 01 11 %e A334616 11 11 10 11 11 11 11 10 %e A334616 ------------------------------------------ %e A334616 01 11 %e A334616 11 11 %e A334616 ------------------------------------------ %e A334616 11 11 %e A334616 11 11 %e A334616 ------------------------------------------ %e A334616 An example for the 2-coloring of the 3 X 3 X 3 grid can be written as: %e A334616 110 000 111 %e A334616 100 000 111 %e A334616 100 000 111 %e A334616 This coloring is equivalent to: %e A334616 111 000 111 %e A334616 001 000 111 %e A334616 000 000 111 %e A334616 because you can get this configuration by rotating the first coloring by 90 degrees. %e A334616 But it is different from: %e A334616 011 000 111 %e A334616 001 000 111 %e A334616 001 000 111 %e A334616 because reflections are not considered. %Y A334616 This is the three-dimensional version of A047937. %Y A334616 Cf. A000543. %K A334616 nonn %O A334616 1,1 %A A334616 _Paul Oelkers_, Sep 08 2020 %E A334616 More terms from _Stefano Spezia_, Sep 09 2020