This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334618 #54 Dec 21 2020 07:29:48 %S A334618 1,2,3,4,5,6,1,7,5,8,2,9,6,10,3,11,7,12,4,13,8,14,5,15,9,1,16,6,5,17, %T A334618 10,9,18,7,2,19,11,6,20,8,10,21,12,3,22,9,7,23,13,11,24,10,4,25,14,8, %U A334618 26,11,12,27,15,5,28,12,9,1,29,16,13,5,30,13,6,9,31,17,10,13,32,14,14,2 %N A334618 Irregular triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists successive blocks of k consecutive integers that differ by 4, where the m-th block starts with m, m >= 1, and the first element of column k is in the row that is the k-th hexagonal number (A000384). %C A334618 This triangle can be interpreted as a table of partitions into consecutive parts that differ by 4 (see the Example section). %C A334618 Also, every triangle of this family has the property that starting from row n the sum of k positive and consecutive terms in the column k is equal to n. %e A334618 Triangle begins (rows 1..28): %e A334618 1; %e A334618 2; %e A334618 3; %e A334618 4; %e A334618 5; %e A334618 6, 1; %e A334618 7, 5; %e A334618 8, 2; %e A334618 9, 6; %e A334618 10, 3; %e A334618 11, 7; %e A334618 12, 4; %e A334618 13, 8; %e A334618 14, 5; %e A334618 15, 9, 1; %e A334618 16, 6, 5; %e A334618 17, 10, 9; %e A334618 18, 7, 2; %e A334618 19, 11, 6; %e A334618 20, 8, 10; %e A334618 21, 12, 3; %e A334618 22, 9, 7; %e A334618 23, 13, 11; %e A334618 24, 10, 4; %e A334618 25, 14, 8; %e A334618 26, 11, 12; %e A334618 27, 15, 5; %e A334618 28, 12, 9, 1; %e A334618 ... %e A334618 Figures A..H show the location (in the columns of the table) of the partitions of n = 1..8 (respectively) into consecutive parts that differ by 4: %e A334618 . ----------------------------------------------------------- %e A334618 Fig: A B C D E F G H %e A334618 . ----------------------------------------------------------- %e A334618 . n: 1 2 3 4 5 6 7 8 %e A334618 Row ----------------------------------------------------------- %e A334618 1 | [1];| 1; | 1; | 1; | 1; | 1; | 1; | 1; | %e A334618 2 | | [2];| 2; | 2; | 2; | 2; | 2; | 2; | %e A334618 3 | | | [3];| 3; | 3; | 3; | 3; | 3; | %e A334618 4 | | | | [4];| 4; | 4; | 4; | 4; | %e A334618 5 | | | | | [5];| 5; | 5; | 5; | %e A334618 6 | | | | | | [6],[1];| 6, 1;| 6, 1; | %e A334618 7 | | | | | | [5];| [7],5;| 7, 5; | %e A334618 8 | | | | | | | | [8],[2];| %e A334618 9 | | | | | | | | 9, [6];| %e A334618 . ----------------------------------------------------------- %e A334618 Figure H: for n = 8 the partitions of 8 into consecutive parts that differ by 4 (but with the parts in increasing order) are [8] and [2, 6]. These partitions have one part and two parts respectively. On the other hand we can find the mentioned partitions in the columns 1 and 2 of this table, starting at the row 8. %e A334618 . %e A334618 Illustration of initial terms arranged into a triangular structure: %e A334618 . _ %e A334618 . _|1| %e A334618 . _|2 | %e A334618 . _|3 | %e A334618 . _|4 | %e A334618 . _|5 _| %e A334618 . _|6 |1| %e A334618 . _|7 _|5| %e A334618 . _|8 |2 | %e A334618 . _|9 _|6 | %e A334618 . _|10 |3 | %e A334618 . _|11 _|7 | %e A334618 . _|12 |4 | %e A334618 . _|13 _|8 | %e A334618 . _|14 |5 _| %e A334618 . _|15 _|9 |1| %e A334618 . _|16 |6 |5| %e A334618 . _|17 _|10 _|9| %e A334618 . _|18 |7 |2 | %e A334618 . _|19 _|11 |6 | %e A334618 . _|20 |8 _|10 | %e A334618 . _|21 _|12 |3 | %e A334618 . _|22 |9 |7 | %e A334618 . |23 |13 |11 | %e A334618 ... %e A334618 The number of horizontal line segments in the n-th row of the diagram equals A334461(n), the number of partitions of n into consecutive parts that differ by 4. %Y A334618 Tables of the same family where the consecutive parts differ by d are A010766 (d=0), A286001 (d=1), A332266 (d=2), A334945 (d=3), this sequence (d=4). %Y A334618 Cf. A000384, A327262, A334460, A334461, A334462, A334464. %K A334618 nonn,tabf %O A334618 1,2 %A A334618 _Omar E. Pol_, Dec 18 2020