cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334624 Decimal expansion of Pi + e + phi + sqrt(2) + i^i - 1/10.

This page as a plain text file.
%I A334624 #16 Sep 26 2020 11:44:19
%S A334624 9,0,0,0,0,0,1,6,0,9,5,2,2,5,9,0,2,7,9,3,7,6,1,6,2,0,3,3,0,4,2,4,8,0,
%T A334624 3,4,8,2,7,8,2,7,5,3,8,9,8,8,9,5,4,5,9,3,9,3,2,9,1,7,6,4,6,3,7,8,3,3,
%U A334624 0,5,8,5,5,2,0,6,2,4,8,2,2,1,5,4,5,6,1,2,0,2,0,2,4,9,7,4,2
%N A334624 Decimal expansion of Pi + e + phi + sqrt(2) + i^i - 1/10.
%C A334624 A near-integer obtained by subtracting one tenth from the sum of Archimedes's constant, Napier's constant, golden ratio, Pythagoras's constant and the imaginary unit to the power of itself.
%F A334624 Equals Pi + e + (sqrt(5)+1)/2 + sqrt(2) + e^(-Pi/2) - 1/10.
%e A334624 9.0000016095...
%p A334624 Digits:=100; evalf(Pi + exp(1) + (sqrt(5)+1)/2 + sqrt(2) + I^I - 1/10);
%t A334624 RealDigits[Pi + Exp[1] + GoldenRatio + Sqrt[2] + Re[I^I] - 1/10, 10, 100][[1]]
%o A334624 (PARI) Pi + exp(1) + (sqrt(5)+1)/2 + sqrt(2) + real(I^I) - 1/10
%o A334624 (MATLAB) pi + exp(1) + (sqrt(5)+1)/2 + sqrt(2) + i^i - 1/10
%Y A334624 Cf. A000796, A001113, A001622, A002193, A049006, A133055.
%K A334624 cons,nonn
%O A334624 1,1
%A A334624 _Michal Paulovic_, Sep 09 2020