This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334632 #21 Jan 05 2025 09:39:57 %S A334632 7,5,1,7,3,4,1,8,2,7,1,3,8,0,8,2,2,8,5,5,0,9,9,8,9,0,1,2,3,0,7,4,6,5, %T A334632 7,5,9,5,9,5,8,6,5,7,6,6,0,7,2,9,2,0,0,2,7,3,8,8,4,4,6,8,4,6,0,2,9,2, %U A334632 6,9,4,7,0,7,7,7,8,1,9,3,5,2,5,2,6,7,4,6,2,3,4,6,8,0,8,2,1,5,1,5,2,7,3,7,3,4 %N A334632 Decimal expansion of Sum_{k>=0} (-1)^k / ((2*k)!)^2. %D A334632 Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 55, page 552. %H A334632 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KelvinFunctions.html">Kelvin Functions</a>. %H A334632 Wikipedia, <a href="https://en.wikipedia.org/wiki/Kelvin_functions">Kelvin functions</a>. %F A334632 Equals Re(BesselJ(0, 2*exp(3*Pi*i/4))). %e A334632 0.75173418271380822855099890123074657595958657660729200273884... %p A334632 evalf(Sum((-1)^k/(2*k)!^2, k=0..infinity), 120); %t A334632 RealDigits[KelvinBer[0, 2], 10, 120][[1]] %t A334632 RealDigits[Re[Hypergeometric0F1Regularized[1, I]], 10, 120][[1]] %t A334632 RealDigits[HypergeometricPFQ[{}, {1/2, 1/2, 1}, -1/16], 10, 120][[1]] (* _Vaclav Kotesovec_, Jul 19 2021 *) %o A334632 (PARI) sumalt(k=0, (-1)^k/(2*k)!^2) %Y A334632 Cf. A334379. %K A334632 nonn,cons %O A334632 0,1 %A A334632 _Vaclav Kotesovec_, Sep 10 2020