A334636
Number of different values of (x_n, x_1*x_2*...*x_n) where x_1=1 and x_i-x_{i-1} is 0 or 1.
Original entry on oeis.org
1, 2, 4, 8, 16, 31, 59, 110, 202, 366, 653, 1143, 1961, 3303, 5480, 8992, 14647, 23742, 38334, 61648, 98700, 157265, 249397, 393814, 619611, 971988, 1521015, 2374946, 3700290, 5751806, 8916890, 13780598, 21220014, 32540179, 49668909, 75435401
Offset: 1
-
k=[{(1, 1)}]
for i in range(20):
k.append(set([(i[0]*i[1], i[1]) for i in k[-1]])|set([(i[0]*(i[1]+1), i[1]+1) for i in k[-1]]))
[len(i) for i in k]
A334637
Sum of different values of x_1*x_2*...*x_n where x_1=1 and x_i-x_{i-1} is 0 or 1.
Original entry on oeis.org
1, 3, 13, 75, 517, 4443, 43093, 486315, 6082117, 81407163, 1184034613, 19251200715, 342825926437, 6604284459483, 136398242877973, 2984396941441515, 68215762130020357, 1627134074774283003, 40749275946991321333, 1079215210446044648715, 30311064871950344936677, 897713839789350372765723
Offset: 1
n=5: possible values are 1*1*1*1*1, 1*1*1*1*2, 1*1*1*2*2, 1*1*1*2*3, 1*1*2*2*2, 1*1*2*2*3, 1*1*2*3*3, 1*1*2*3*4, 1*2*2*2*2, 1*2*2*2*3, 1*2*2*3*3, 1*2*2*3*4, 1*2*3*3*3, 1*2*3*3*4, 1*2*3*4*4, 1*2*3*4*5, but since 1*1*2*3*4=1*2*2*2*3, the sum of other values is A000670(5)-1*1*2*3*4=517.
Cf.
A334635 (number of different values),
A000670 (sum if the values are not deduplicated),
A001147 (sum of products of nesting levels in n pairs of parentheses if not deduplicated).
-
k=[{(1, 1)}]
for i in range(20):
k.append(set([(i[0]*i[1], i[1]) for i in k[-1]])|set([(i[0]*(i[1]+1), i[1]+1) for i in k[-1]]))
[sum(set(j[0] for j in i)) for i in k]
Showing 1-2 of 2 results.
Comments