cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A334909 Area/6 of primitive Pythagorean triangles given in A334638 as triples.

Original entry on oeis.org

1, 35, 770, 14260, 244776, 4053840, 65979040, 1064678720, 17107266176, 274296689920, 4393395202560, 70331527418880, 1125602147608576, 18012016334950400, 288211318352814080, 4611533554425610240, 73785756576381566976, 1180581862943988449280
Offset: 0

Views

Author

Ralf Steiner, May 16 2020

Keywords

Comments

See A334638 for these triangles, and also for the Firstov reference.
For primitive Pythagorean triangle (x, y, z) = (u^2 - v^2, 2*u*v, u^2 + v^2) the area is A = x*y/2 = u*v*(u^2 - v^2) = z*h/2 with altitude h, and h is an irreducible fraction.
From A334638 follows A(n)/6 = (x(n)/3)*(y(n)/4) = A171477(n)*A010036(n), for n >= 0. See the formula section.
Limit_{n->infinity} A(n)/(3*2^(4*n+3)) = 1. See the formula section. - Wolfdieter Lang, Jun 14 2020

Examples

			a(0) = 3*4/12 = 1 for (3, 4, 5).
		

Crossrefs

Programs

  • Mathematica
    Table[ 2^(-1 + n) (-1 + 3 2^n) (-1 + 2^(1 + n)) (-1 + 2^(2 + n))/3, {n, 0, 17}]
  • PARI
    Vec((1 + 5*x) / ((1 - 2*x)*(1 - 4*x)*(1 - 8*x)*(1 - 16*x)) + O(x^20)) \\ Colin Barker, May 17 2020

Formula

a(n) = 2^(n-1)*(3*2^n - 1)*(2^(n+1) - 1)*(2^(n+2) - 1)/3.
a(n) = 2^(4*n+2)*(1 - 13/(3*2^(n+2)) + 3/2^(2*n+3) - 1/(3*2^(3*(n+1)))), for n >= 0.
From Colin Barker: (Start)
G.f.: (1 + 5*x) / ((1 - 2*x)*(1 - 4*x)*(1 - 8*x)*(1 - 16*x)).
a(n) = 30*a(n-1) - 280*a(n-2) + 960*a(n-3) - 1024*a(n-4) for n > 3. (End)

Extensions

Edited by Wolfdieter Lang, Jun 14 2020
Showing 1-1 of 1 results.