cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334648 a(n) is the total number of down steps between the second and third up steps in all 3_1-Dyck paths of length 4*n.

This page as a plain text file.
%I A334648 #15 Aug 08 2020 01:39:51
%S A334648 0,0,34,132,722,4638,32416,238956,1827918,14370595,115384756,
%T A334648 942115942,7798224226,65286060253,551838621972,4702955036640,
%U A334648 40366238473530,348631520142879,3027590307082804,26420699531880832,231571468023697960,2037650653547067005
%N A334648 a(n) is the total number of down steps between the second and third up steps in all 3_1-Dyck paths of length 4*n.
%C A334648 A 3_1-Dyck path is a lattice path with steps (1, 3), (1, -1) that starts and ends at y = 0 and stays above the line y = -1.
%C A334648 For n = 2, there is no 3rd up step, a(2) = 34 enumerates the total number of down steps between the 2nd up step and the end of the path.
%H A334648 Andrei Asinowski, Benjamin Hackl, Sarah J. Selkirk, <a href="https://arxiv.org/abs/2007.15562">Down-step statistics in generalized Dyck paths</a>, arXiv:2007.15562 [math.CO], 2020.
%F A334648 a(0) = a(1) = 0 and a(n) = binomial(4*n+1, n)/(4*n+1) + 6*Sum_{j=1..2} binomial(4*j+2, j)*binomial(4*(n-j), n-j)/((4*j+2)*(n-j+1)) - 9*[n=2] for n > 1, where [ ] is the Iverson bracket.
%e A334648 For n = 2, the 3_1-Dyck paths are DUDDDUDD, DUDDUDDD, DUDUDDDD, DUUDDDDD, UDDDDUDD, UDDDUDDD, UDDUDDDD, UDUDDDDD, UUDDDDDD. In total, there are a(2) = 2 + 3 + 4 + 5 + 2 + 3 + 4 + 5 + 6 = 34 down steps between the 2nd up step and the end of the path.
%t A334648 a[0] = a[1] = 0; a[n_] := Binomial[4*n + 1, n]/(4*n + 1) + 6 * Sum[Binomial[4*j + 2, j] * Binomial[4*(n - j), n - j]/((4*j + 2)*(n - j + 1)), {j, 1, 2}] - 9 * Boole[n == 2]; Array[a, 22, 0] (* _Amiram Eldar_, May 12 2020 *)
%o A334648 (SageMath) [binomial(4*n + 1, n)/(4*n + 1) + 6*sum([binomial(4*j + 2, j)*binomial(4*(n - j), n - j)/(4*j + 2)/(n - j + 1) for j in srange(1, 3)]) - 9*(n==2) if n > 1 else 0 for n in srange(30)] # _Benjamin Hackl_, May 12 2020
%Y A334648 Cf. A002293, A007226, A007228, A334645, A334646, A334647, A334649, A334680, A334682, A334785.
%K A334648 nonn,easy
%O A334648 0,3
%A A334648 _Benjamin Hackl_, May 12 2020