cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334650 a(n) is the total number of down steps between the first and second up steps in all 3_2-Dyck paths of length 4*n.

This page as a plain text file.
%I A334650 #11 Aug 07 2020 12:08:00
%S A334650 0,6,31,158,975,6639,48050,362592,2820789,22460120,182141553,
%T A334650 1499143282,12490923757,105150960654,892973346300,7640934031920,
%U A334650 65813450140017,570160918044288,4964875184429660,43431741548248440,381496856026500220,3363457643008999635
%N A334650 a(n) is the total number of down steps between the first and second up steps in all 3_2-Dyck paths of length 4*n.
%C A334650 A 3_2-Dyck path is a lattice path with steps (1, 3), (1, -1) that starts and ends at y = 0 and stays above the line y = -2.
%C A334650 For n = 1, there is no 2nd up step, a(1) = 6 enumerates the total number of down steps between the 1st up step and the end of the path.
%H A334650 A. Asinowski, B. Hackl, and S. Selkirk, <a href="https://arxiv.org/abs/2007.15562">Down step statistics in generalized Dyck paths</a>, arXiv:2007.15562 [math.CO], 2020.
%F A334650 a(0) = 0 and a(n) = 3*binomial(4*n, n)/(n+1) - binomial(4*n+2, n)/(n+1) + 9*binomial(4*(n-1), n-1)/n - 6*[n=1] for n > 0, where [ ] is the Iverson bracket.
%e A334650 For n = 1, the 3_2-Dyck paths are DDUD, DUDD, UDDD. This corresponds to a(1) = 1 + 2 + 3 = 6 down steps between the 1st up step and the end of the path.
%t A334650 a[0] = 0; a[n_] := 3 * Binomial[4*n, n]/(n + 1) - Binomial[4*n + 2, n]/(n + 1) + 9 * Binomial[4*(n - 1), n - 1]/n - 6 * Boole[n == 1]; Array[a, 22, 0] (* _Amiram Eldar_, May 13 2020 *)
%o A334650 (SageMath) [3*binomial(4*n, n)/(n + 1) - binomial(4*n + 2, n)/(n + 1) + 9*binomial(4*(n - 1), n - 1)/n - 6*(n==1) if n > 0 else 0 for n in srange(30)] # _Benjamin Hackl_, May 13 2020
%Y A334650 Cf. A001764, A007226, A007228, A334609, A334647, A334648, A334649, A334785.
%K A334650 nonn,easy
%O A334650 0,2
%A A334650 _Benjamin Hackl_, May 13 2020