cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334651 a(n) is the total number of down steps between the first and second up steps in all 4_1-Dyck paths of length 5*n.

This page as a plain text file.
%I A334651 #14 Aug 07 2020 12:08:06
%S A334651 0,7,25,155,1195,10282,94591,910480,9054965,92310075,959473878,
%T A334651 10129715890,108327387675,1170975480360,12773887368040,
%U A334651 140445927510832,1554748206904325,17314584431331025,193849445090545875,2180550929942519685,24632294533221865028
%N A334651 a(n) is the total number of down steps between the first and second up steps in all 4_1-Dyck paths of length 5*n.
%C A334651 A 4_1-Dyck path is a lattice path with steps (1, 4), (1, -1) that starts and ends at y = 0 and stays above the line y = -1.
%C A334651 For n = 1, there is no 2nd up step, a(1) = 7 enumerates the total number of down steps between the 1st up step and the end of the path.
%H A334651 A. Asinowski, B. Hackl, and S. Selkirk, <a href="https://arxiv.org/abs/2007.15562">Down step statistics in generalized Dyck paths</a>, arXiv:2007.15562 [math.CO], 2020.
%F A334651 a(0) = 0 and a(n) = 4*binomial(5*n, n)/(n+1) - 3*binomial(5*n+1, n)/(n+1) + 8*binomial(5*(n-1), n-1)/n - 2*[n=1] for n > 0, where [ ] is the Iverson bracket.
%e A334651 For n = 1, the 4_1-Dyck paths are DUDDD, UDDDD. This corresponds to a(1) = 3 + 4 = 7 down steps between the 1st up step and the end of the path.
%t A334651 a[0] = 0; a[n_] := 4 * Binomial[5*n, n]/(n + 1) - 3 * Binomial[5*n + 1, n]/(n + 1) + 8*Binomial[5*(n - 1), n - 1]/n - 2 * Boole[n == 1]; Array[a, 21, 0] (* _Amiram Eldar_, May 13 2020 *)
%o A334651 (SageMath) [4*binomial(5*n, n)/(n + 1) - 3*binomial(5*n + 1, n)/(n + 1) + 8*binomial(5*(n - 1), n - 1)/n - 2*(n==1) if n > 0 else 0 for n in srange(30)]
%Y A334651 Cf. A002294, A124724, A334642, A334647, A334719, A334786, A334787.
%K A334651 nonn,easy
%O A334651 0,2
%A A334651 _Benjamin Hackl_, May 13 2020