This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334658 #40 Sep 01 2024 09:35:12 %S A334658 1,2,3,1,5,3,8,8,13,18,1,21,38,5,34,76,18,55,147,53,1,89,277,139,7, %T A334658 144,512,336,32,233,932,766,116,1,377,1676,1670,364,9,610,2984,3516, %U A334658 1032,50,987,5269,7198,2714,215,1,1597,9239,14402,6734,785,11 %N A334658 Triangular array read by rows. T(n,k) is the number of length n words on alphabet {0,1} with k maximal runs of 0's having length 2 or more, n>=0, 0<=k<=nearest integer to n/3. %H A334658 Sergi Elizalde, Johnny Rivera Jr., and Yan Zhuang, <a href="https://arxiv.org/abs/2408.15111">Counting pattern-avoiding permutations by big descents</a>, arXiv:2408.15111 [math.CO], 2024. See p. 6. %H A334658 P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009; see page 304. %F A334658 O.g.f.: ((u x^2)/(1 - x) + (1 - x^2)/(1 - x))/(1 - x ((u x^2)/(1 - x) + (1 - x^2)/(1 - x))). %F A334658 Generally, the o.g.f. for such words having maximal runs of length at least r is: ((u x^r)/(1 - x) + (1 - x^r)/(1 - x))/(1 - x ((u x^r)/(1 - x) + (1 - x^r)/(1 - x))). %e A334658 1, %e A334658 2, %e A334658 3, 1, %e A334658 5, 3, %e A334658 8, 8, %e A334658 13, 18, 1, %e A334658 21, 38, 5, %e A334658 34, 76, 18, %e A334658 55, 147, 53, 1 %e A334658 T(6,2) = 5 because we have: 000100, 001000, 001001, 001100, 100100. %t A334658 nn = 15; c[z_, u_] := ((1 - z^r)/(1 - z) + u z^r/(1 - z))*1/(1 - z ((1 - z^r)/(1 - z) + u z^r/(1 - z))) /. r -> 2; Map[Select[#, # > 0 &] &, CoefficientList[Series[c[z, u], {z, 0, nn}], {z, u}]] // Grid %Y A334658 Cf. A000045 (column k=0) A006478 (column k=1). %Y A334658 Row sums give A000079. %K A334658 nonn,tabf %O A334658 0,2 %A A334658 _Geoffrey Critzer_, Jul 25 2020