cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A334660 Dirichlet g.f.: 1 / zeta(s-4).

This page as a plain text file.
%I A334660 #14 Apr 04 2023 12:35:12
%S A334660 1,-16,-81,0,-625,1296,-2401,0,0,10000,-14641,0,-28561,38416,50625,0,
%T A334660 -83521,0,-130321,0,194481,234256,-279841,0,0,456976,0,0,-707281,
%U A334660 -810000,-923521,0,1185921,1336336,1500625,0,-1874161,2085136,2313441,0,-2825761,-3111696,-3418801,0,0,4477456
%N A334660 Dirichlet g.f.: 1 / zeta(s-4).
%C A334660 Dirichlet inverse of A000583.
%C A334660 Moebius transform of A189922.
%C A334660 Inverse Moebius transform of A053826.
%H A334660 Amiram Eldar, <a href="/A334660/b334660.txt">Table of n, a(n) for n = 1..10000</a>
%F A334660 G.f. A(x) satisfies: A(x) = x - 2^4 * A(x^2) - 3^4 * A(x^3) - 4^4 * A(x^4) - ...
%F A334660 a(1) = 1; a(n) = -n^4 * Sum_{d|n, d < n} a(d) / d^4.
%F A334660 a(n) = mu(n) * n^4.
%F A334660 Multiplicative with a(p^e) = -p^4 if e = 1 and 0 otherwise. - _Amiram Eldar_, Dec 05 2022
%t A334660 Table[MoebiusMu[n] n^4, {n, 46}]
%Y A334660 Cf. A008683, A055615, A334657, A334659.
%Y A334660 Cf. A000583, A053826, A189922.
%K A334660 sign,mult
%O A334660 1,2
%A A334660 _Ilya Gutkovskiy_, May 07 2020