This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A334662 #15 Sep 08 2022 08:46:25 %S A334662 1,3,2,4,2,8,2,8,5,8,2,15,2,8,4,9,2,17,2,11,4,8,2,27,3,8,6,11,2,22,2, %T A334662 11,4,8,4,33,2,8,4,23,2,22,2,11,10,8,2,30,3,11,4,11,2,26,4,23,4,8,2, %U A334662 43,2,8,10,12,4,22,2,11,4,22,2,57,2,8,8,11,4,22 %N A334662 a(n) = Sum_{d|n} gcd(tau(d), pod(d)), where pod(k) is the product of the divisors of k (A007955). %C A334662 Inverse Möbius transform of A306671. - _Antti Karttunen_, May 19 2020 %H A334662 Antti Karttunen, <a href="/A334662/b334662.txt">Table of n, a(n) for n = 1..65537</a> %F A334662 a(p) = 2 for p = odd primes (A065091). %e A334662 a(6) = gcd(tau(1), pod(1)) + gcd(tau(2), pod(2)) + gcd(tau(3), pod(3)) + gcd(tau(6), pod(6)) = gcd(1, 1) + gcd(2, 2) + gcd(2, 3) + gcd(4, 36) = 1 + 2 + 1 + 4 = 8. %o A334662 (Magma) [&+[GCD(#Divisors(d), &*Divisors(d)): d in Divisors(n)]: n in [1..100]] %o A334662 (PARI) a(n) = sumdiv(n, d, gcd(numdiv(d), vecprod(divisors(d)))); \\ _Michel Marcus_, May 08 2020 %Y A334662 Cf. A334579 (Sum_{d|n} gcd(tau(d), sigma(d))), A334663 (Sum_{d|n} gcd(sigma(d), pod(d))). %Y A334662 Cf. A000005 (tau(n)), A007955 (pod(n)), A306671 (gcd(tau(n), pod(n))). %K A334662 nonn %O A334662 1,2 %A A334662 _Jaroslav Krizek_, May 07 2020