A334689 Triangle read by rows: T(n,k) (0 <= k <= n) = k!*(Stirling2(n,k)+(k+1)*Stirling2(n,k+1))^2.
1, 1, 1, 1, 9, 2, 1, 49, 72, 6, 1, 225, 1250, 600, 24, 1, 961, 16200, 25350, 5400, 120, 1, 3969, 181202, 735000, 470400, 52920, 720, 1, 16129, 1866312, 17360406, 26460000, 8490720, 564480, 5040, 1, 65025, 18301250, 362237400, 1159593624, 840157920, 153679680, 6531840, 40320
Offset: 0
Examples
Triangle begins: 1, 1, 1, 1, 9, 2, 1, 49, 72, 6, 1, 225, 1250, 600, 24, 1, 961, 16200, 25350, 5400, 120, 1, 3969, 181202, 735000, 470400, 52920, 720, 1, 16129, 1866312, 17360406, 26460000, 8490720, 564480, 5040, ...
Links
- Ki Hang Kim, and Fred W. Roush, Inverses of Boolean matrices, Linear Algebra and its Applications 22 (1978): 247-262. See Th. 10.
Programs
-
Maple
T := (n,k) -> k!*(Stirling2(n,k)+(k+1)*Stirling2(n,k+1))^2; r:=n->[seq(T(n,k),k=0..n)]; for n from 0 to 12 do lprint(r(n)); od:
Comments